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Abstract

Still and multi-media images are subject to transformations for compression,

steganographic embedding and digital watermarking. We propose new mea-

sures and techniques for detection and analysis of steganographic embedded

content. We show that both statistical and pattern classification techniques

using our proposed measures provide reasonable discrimination schemes for

detecting embeddings of different levels. Our measures are based on a few

statistical properties of bit strings and wavelet coefficients of image pixels.
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Chapter 1

Introduction

Steganography is a Greek word meaning covered or hidden writing. It is the art and

science of secret communication, aiming to conceal the existence of the communication.

This is a different from Cryptography, where the existence of the communication is not

disguised but the message is obscured by scrambling it. Use of cryptography would not

stop a third party knowing that some secret communication is going on. In steganography,

the message to be sent is concealed in such a way that an intruder would not know whether

any secret communication is going on or not. Hiding information inside digital carriers is

becoming popular( [1, 13]). A rapid growth in demand and consumption of multimedia

has resulted in data hiding techniques for files like audio (.wav), images (.bmp, .pnm,

.jpg). Digital images are most common sources for hiding message. The process of hiding

information is called an embedding . Least Significant Bit (LSB) embedding is the most

widely used steganographic technique. In LSB embedding, the LSBs of uncompressed

images are replaced with the message bits. We will be seeing this in detail in 2.3.2. The

amount of embedding (the number of bits embedded) referred to as level, is given as the

percentage of the total number of pixels.

Steganalysis is the art of seeing the unseen. Steganalysis will analyze whether a

given content, contains any secret message camoflagued into it. We will be concentrating

on steganalysis of images. Natural images carry some statistical properties. These get

disturbed due to steganographic operations. A steganalyst explores this fact by analyz-

ing the images. Some of the powerful methods for the analysis of steganographic images

are [5, 6, 7, 11]. We propose new measures and techniques for detection and analysis of

steganographic embedded content. Our approach is to blend different techniques together

viz. statistical, pattern classification techniques, run length, transform coding techniques,
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and also encryption techniques. Using our proposed measures, we show that with statis-

tical and pattern classification techniques, we obtain discrimination schemes for detecting

embeddings of different levels. Our measures are based on a few statistical properties of

bit strings and wavelet coefficients of image pixels.

In Chapter 4, we explain our approach towards classification of given data based on

a feature vector consisting of statistical measures and using Support Vector Machine

(SVM) tools. In Chapter 5, we propose the use of wavelet transforms for steganalysis.

Our results, presented in Chapter 4 and 5 show the efficacy of our measures in discrimi-

nating different levels of embedding. We then explore the power of Ridgelets and describe

experimental setup for that in Chapter 5.8. We conclude with our plans for improved and

finer steganalysis in Chapter 6.
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Chapter 2

Background

2.1 History

This art of covert communication is very ancient [1]. Till date, multitude of methods and

variations have been developed, for hiding information. Hiding the secret message under

a wax coating of a wax coated tablets is one of the oldest methods. The message can be

camouflaged in text message. e.g.

Apparently neutral’s protest is thoroughly discounted and ignored. Isman

hard hit. Blockade issue affects pretext for embargo on by products, ejecting

suets and vegetable oils.

Taking the second letter in each word the following message emerges:

Pershing sails from NY June 1. I

These types of techniques are called “Null Ciphers”. Invisible inks and microdots were

used in World War II. Invisible ink is, the one with which if we write on a plain paper,

nobody will be able to read with naked eyes. If we heat the paper, the message is visible.

In Microdot technology, the photograph of document to send is taken and the photograph

is miniaturized to the size of period of printed document. This ‘dot’ size photograph is put

on any period of a document. The tools like ‘Genomic Steganography’ (hiding message

in human DNA) are recent advances in this science.
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Figure 2.1: Typical Steganography Model

2.2 Steganography Model

The commencement of computer era has given a new dimension to the art of secret com-

munication. Computer based techniques hide data in digital carriers by changing the

carriers in such a manner that even after altering them, they appear to be innocuous.

These carriers are called as “Cover Media”. Cover media can be audio files, images

etc. The process of hiding information on the cover is called as “embedding”. Different

steganographic schemes will have their own ways of embedding the message. These are

called ‘steganographic algorithms’. Fig. 2.1 shows the typical model of steganographic

techniques. A stegokey is used to provide additional security. Even if an object is sus-

pected to contain steganographic embedding by a third person, the stegokey will preclude

the detection of the secret message. So ideally for a third person, without knowledge of

stegokey and stego algorithm, it is not possible to read the hidden message from stegoed

object.

Capacity of Cover Object : The maximum length of message that can be embedded into

a cover without affecting perceptual quality or signal strength, is referred as capacity of

the particular object.

Level of embedding: The actual amount of embedding as percent of capacity of cover

object is level of embedding. So it can be anywhere between 0% to 100%.
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2.3 Image Steganography

We will see how information can be camouflaged in images. First we will see what are

digital images.

2.3.1 Digital Images

To store an image on computer, it is divided into small parts called pixels. The value of

intensity of these pixels is stored for three basic colors as an image on computer. ‘.bmp’,

‘.pnm’ are some file formats to store such images, which are uncompressed file formats

for images. These images have a lot of redundancy. Also the loss of small information in

pixel intensity is not captured by the human eye. So there exists compression techniques

like jpeg for images. The compression techniques will try to de-correlate the redundancy

and may also introduce some loss of information.

2.3.2 LSB Steganography for Uncompressed images

One simple and yet effective method of steganography is LSB replacement. As men-

tioned, small perturbation in pixel intensity is not detected by an eye; these techniques

take advantage of it by changing the LSB of a few pixels. The algorithm used will decide

which pixels in an image to be modified. Some algorithm will pick the pixels in image

at regular interval depending upon image size and message size. Sophisticated stegano-

graphic software viz. S-Tools [13], CSA-Tool [18] can add further layers of complexities,

such as distributing messages in a pseudo-random way and encrypting messages. The

disadvantage of such schemes is that lossy compression techniques can not be applied on

such images after the process of embedding as information is hidden in LSBs which are

highly susceptible to change. This technique is explained in Fig. 2.2. One byte of the

message, the middle one in the Fig. 2.2, is embedded into the LSBs of eight consecutive

pixels in the cover image by modifying the eight LSBs of the eight pixels in the cover

image to the same as those in the message, right in figure.

2.3.3 LSB Steganography for JPEG images

For compressed image formats (e.g., JPEG), LSB insertion is performed on the compressed

data streams, for instance, the quantized DCT coefficients in a JPEG image. Similar

to embedding in raw pixels, LSB insertion on the compressed data stream introduce
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Figure 2.2: LSB Steganography

negligible perceptual difference between the cover and stego images. There are schemes for

jpeg images, to conceal data in transform domain i.e. frequency domain, after quantization

of DCT coefficients (F5 [3]). Disadvantage of such schemes is that the message length

that can be hidden in such images is small. Also image quality degrades very fast, as

concealed message size increases. Such techniques are relatively easier to crack. So LSB

hiding and detection are of most interest.

2.3.4 Quantization Index Modulation (QIM) Steganography

A message can be embedded in the host medium through the choice of a scalar quantizer.

For example, consider a uniform quantizer of step size δ, used on the host’s coefficients in

some transform domain. Let odd reconstruction points represent a signature data bit ‘1’.

Likewise, even multiples of ‘δ’ is used to embed ‘0’. Thus, depending on the bit value to

be embedded, one of the two uniform quantizers of step size 2∗ δ is chosen. Moreover, the
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quantizers can be pseudo randomly dithered, where the chosen quantizers are shifted by a

pseudo-random sequence available only to encoder and decoder. As such, the embedding

scheme is not readily decipherable to a third party observer, without explicit knowledge

of the dither sequence. Decoding is performed by quantizing the received coefficient to

the nearest reconstruction point of all quantizers. An even reconstruction point indicates

that a ‘0’ has been hidden. Likewise, if a reconstruction point lies on an odd quantizer, a

‘1’ has been hidden [2].
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Chapter 3

Steganalysis of images

All natural images have a lot of correlation among neighboring pixels. Image pixel data

has statistical properties. All these are disturbed by the process of embedding. These are

exploited in steganalysis of images. The various kinds of problems handled by steganalysis

are,

• Identification of embedding algorithm

• Detection of presence of hidden message in cover signal

• Estimation of embedded message length

• Prediction of location of hidden message bits

• Estimation of secret key used in the embedding algorithm

• Estimation of parameter of embedding algorithm

• Extraction of hidden message (!!!)

Various techniques for steganalysis are described below.

3.1 Visual attacks

Most steganographic programs embed the message bits either sequentially or in some

pseudo-random fashion. In most programs, the message bits are chosen non adaptively

independently of the image content. If the image contains homogeneous areas or areas

with the color saturated at either 0 or 255, we can look for suspicious artifacts using
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simple visual inspection. Even though the artifacts cannot be readily seen, we can plot

one bit-plane (for example, the LSB plane) and inspect just this bit-plane. This attack

is especially applicable to palette images for LSB embedding in indices to the palette.

If, at the same time, the message is embedded sequentially, one can have a convincing

argument for the presence of steganographic messages in an image. Although visual

attacks are simple, they are hard to automate and their reliability is highly questionable

[5].

3.2 Chi Square / Pair of Values (PoVs) method

In LSB replacement, while embedding the message, fixed set of Pairs of Values (PoVs) are

flipped into each other. e.g. 0 - 1, 2 - 3, ... 254 - 255. 2 will never become 1 or vice versa.

Pfitzman and Westfield [5] introduced a powerful statistical attack that can be applied

to any steganographic technique in which fixed set of Pairs of Values (PoVs) are flipped

into each other to embed the message bits. This method is based on statistical analysis

of PoVs exchanged during message embedding. As the number of pixels for which LSB

has been replaced increases, the frequencies of both values of each PoV tend to become

equal. The idea of the statistical attack is to compare the theoretically expected frequency

distribution in stego image with some sample distribution observed in the possibly changed

carrier medium.

3.3 RS Steganalysis

Just statistical measures on LSBs for detecting level of embedding is unreliable as the

LSB bit plane does not contain any easily recognizable structure. But even though it

appears random, it has some relation with other bit planes. RS Steganalysis exploits

this property. Fridrich et al. [6] developed a steganalytic technique based on this for

detection of LSB embedding in color and grayscale images. They analyze the capacity

for embedding lossless data in LSBs. Randomizing the LSBs decreases this capacity.

To examine an image, they define Regular groups (R) and Singular groups (S) of pixels

depending upon some properties. Then with the help of relative frequencies of these

groups in the given image, in the image obtained from the original image with LSBs

flipped and an image obtained by randomizing LSBs of the original image, they try to

predict the levels of embedding.
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3.4 DCT domain Steganalysis

Since we can not compress image using frequency domain techniques,after LSB hiding,

specific DCT domain steganography has been developed [3, 4]. The algorithm F5 stores

the information in DCT coefficients leading to change in DCT histogram. Fridrich et

al [7, 8] have shown that this change is proportional to the level of embedding. They

also showed that, if we crop an image by 4 rows and 4 columns, we can get the origi-

nal DCT histogram. The basic assumption here is that the quantized DCT coefficients

are robust to small distortions and after cropping the newly calculated DCT coefficients

will not exhibit clusters due to quantization. Also, because the cropped stego image is

visually similar to the cover image, many macroscopic characteristics of cover image will

be approximately preserved. After predicting DCT coefficient’s histogram in the original

image and comparing with that of a stegoed image, the hidden message length can be

calculated.

Tools like Outguess [4] are developed to counter this attack. Fridrich et al [9] have

developed techniques using Blockiness introduced in images due to histogram equalization

to attack Outguess.

We described above a few of steganalysis techniques. There are many more methods

to discover the presence of embedding. But detecting the complete message, or predicting

the message length is not possible in most of these analysis tools. RS Steganalysis [6] is the

most powerful among this for predicting message length. But RS Steganalysis does not

perform well on all images. Shree Lekshmi and Veni Madhavan [19] a measure “adjacent

probable transition” ( APT ) and developed a method which predicts the message length

based on this measure. This has a coarse resolution of predicting the message length but

performs well on a wider range of images than that of RS Steganalysis.

The disadvantage of frequency domain (DCT) stego algorithms is that the hidden

message length small. Also image quality degrades very fast, as concealed message size

increases. Such techniques are relatively easier to crack. Thus LSB hiding in an uncom-

pressed images is of most interest. hence, we concentrate only on LSB data hiding and

detection for uncompressed images. There are few schemes which are slight variants of

LSB replacement techniques. Instead of replacing LSB of pixel value, the pixel value is

incremented or decremented depending upon data bit and pixel value.
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3.5 Assumptions

We develop schemes for LSB Steganalysis under following assumptions,

1. The hidden message contains approximately equal number of 0’s and 1’s.

2. The embedded bits are uniformly distributed in an image.

3. LSB replacement technique is used by the steganographic algorithm.

Our analysis holds true for any stego scheme which satisfies the above assumptions.
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Chapter 4

Classification based on statistical

measures and SVM

Image steganography is a kind of transformation of a cover image and embedded data.

The embedding operation will perturb the statistical properties. We try to capture the

perturbation. We use statistics defined below as feature of non-random strings. As a

first step we establish the power of our feature vector of measures based on statistical

properties of bit strings in discriminating a variety of standard file types (Section 4.2).

Then we explore the possibility of discriminating images with different levels of embed-

dings. (Section 4.3). Once the level of embedding is determined to reasonable accuracy,

we can proceed to the next step of location of embedded bits by other statistical and

combinatorial techniques. For classification we use Support Vector Machines.

4.1 Support Vector Machines

Support vector machine (SVM) is a supervised learning technique for classification. For

classification there are many techniques like neural networks, perceptron, Fisher Discrim-

inant, SVMs. Out of this, SVM is widely used and most popular in Machine learning

community. The key to the success of SVM is the kernel function which maps the data

from the original space into a high dimensional (possibly infinite dimensional) feature

space. By constructing a linear boundary in the feature space, the SVM produces non-

linear boundaries in the original space. When the kernel function is linear, the resulting

SVM is a maximum-margin hyperplane. Given a training sample, a maximum-margin
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hyperplane splits a given training sample in such a way that the distance from the clos-

est cases (support vectors) to the hyperplane is maximized. Typically, the number of

support vectors is much less than the number of the training sample. Nonlinear kernel

functions such as the polynomial kernel and the Gaussian (radial basis function) kernel

are also commonly used in SVM. The computational complexity of the SVM depends on

the training sample, thus it avoids the traditional problem of “Curse of dimensionality”.

One of the most important advantage for the SVM is that it guarantees generalization to

some extent. The decision rules reflect the regularities of the training data rather than

the incapabilities of the learning machine. Because of the many nice properties of SVM,

it has been widely applied to virtually every research field. More detailed discussion of

SVM and kernel methods can be found in [17].

4.2 Classification of different types of files

We use a statistical feature space. We propose a vector of statistical measures [12] for

this purpose. Our feature vector µ ∈ R
9 consists of nine statistical measures. We consider

a bit string S of size 32 ∗ n bits as concatenation of ‘n’ 32 bit words, Si, i = 1, . . . , n.

We define the measures µ(Si) = < µ1(Si), . . . , µ9(Si) > for the words Si and define the

measure for entire string S, namely µ(S) as a weighted sum of the measures µ(Si). The

measures are as follows.

µ1 : Weighted sum of the of k-gram frequencies. Let f(k, j) denote the overlapping

frequency of the k-gram binary pattern of the integer j in Si. For example f(4, 3) =

number of occurrences of the pattern < 0011 > in Si. For a 32 bit word W , we define

µ1(W ) =

4
∑

k=1

(max
j

(f(k, j)) − min
j

(f(k, j)))24(k+1)

We expect the measure µ1 to be smaller for random strings as compared to non-random

strings.

µ2 : Weighted sum of run lengths. Let the vector < l1, l2, . . . > denote the sequence of

run lengths of 0’s and 1’s in a 32 bit word W . Then we define,

µ2(W ) =
∑

2cili

13



where ci are specifically chosen weights. We set ci = 1 ∀ i, without loss of generality.

For random strings, we expect the measure µ2 to be smaller as compared to non-random

strings, since one expects very few long runs.

µ3 : Weighted sum of byte-wise hamming weight transition. Let W = < b0, b1, b2, b3 >,

where bi’s are the bytes of the 32 bit word. Let #1(b) denote the number of 1’s in a byte

b. Then we define,

µ3(W ) = 2#1(b0) + 2#1(b0 ⊕b1) + 2#1(b1 ⊕b2) + 2#1(b2 ⊕b3)

For random strings, we expect µ3 to be higher than for non-random strings. It is also

possible to define the measure µ3 with respect to overlapping bytes in a word, to measure

the smoothness/suddenness of transitions.

µ4 : Fourier transform of the autocorrelation function of the sequence bits in W . Let W

= < a0, ..., a31 > be a 32 bit word. The autocorrelation function A(W ) is the sequence

of communication itself is secret,so A(W ) = < c0, .., c31 > where ci =
∑31

j=0 aj .aj+1

(mod 32), i = 0, .., 31. The discrete Fourier transform F (A(W )) is given by the sequence

F (A(W )) =< f0, ..., f31 >; where fk =
∑31

j=0 cj ωjk mod32 k = 0, ..., 31. Here ω is a 32nd

root of unity. Finally, the measure µ4(W ) is a root mean square average of F and is given

by,

µ4(W ) = (
31

∑

j=0

|fj |
2)1/2

For random strings, we expect µ4 to be smaller than for non-random strings.

µ5 : Weighted Hadamard transform. Using an 8x8 Hadamard matrix (H) and the op-

eration y = Hx, where x is 8x1 bit vector, we get measure µ5. x is single data byte.

When the Hadamard transform is applied on image data, x is taken as the bit string

corresponding to a pixel value.

µ6, µ7, µ8, µ9 : These measures are based on the weighted entropy measures −
∑

pi log pi

where pi’s are probabilities of non-overlapping occurrences of 1,2,3,4 grams in string S.

Thus given a file S of some data, we compute the feature vector µ(S). This vector

captures the statistical characteristics of the bit string corresponding to S. We note that

the statistical properties such as k-gram frequencies, run lengths, auto-correlation and

entropy together are powerful features that discriminate a wide variety of non-random

data. In the following we demonstrate this by classification based on our feature vector.
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We use the feature vector µ defined above as follows. For training of SVM, we measure

statistics on 3 different chunks of 2000 words (8000bytes) from 30 different files to get 90

different µ vectors for each class. For testing, we measure statistics, in similar fashion, on

20 different files from each i.e. 60 µ vectors for each class. Though we have used measures

calculated on 2000 words, our experiments shows that even 400 words are sufficient for

testing a data for classification.

The SVM tool is obtained from http://www.csie.ntu.edu.tw/˜cjlin/libsvm/. This tool

provides scripts to find the best values of hyper parameters required for SVM, based

on the train data set. We used the most widely used ‘Gaussian kernel’ for SVM. For

avoiding some features dominating the classification, we scale each measure to zero mean,

unit variance. We studied the following eight different classes:

1. jpeg 2. bmp/pnm 3. zip files 4. gz files 5. text files 6. ps files 7. pdf files

and 8. c files.

We present our classification results in confusion matrix Table 4.2. The ijth entry is

the probability of a test data belonging to class i and being classified as class j. We see

from the table that in all but two of the eight cases, the classification accuracy is near 1.

We used a total of 540 µ vectors for testing and achieved overall accuracy of 80%.

jpeg bmp/pnm zip gz txt ps pdf c
jpeg 0.9 0.05 0.05 0.0 0.0 0.0 0.0 0.0

bmp/pnm 0.0 0.9 0.0 0.0 0.0 0.0 0.05 0.05
zip 0.0 0.0 0.6 0.35 0.0 0.0 0.05 0.0
gz 0.0 0.0 0.1 0.9 0.0 0.0 0.0 0.0
txt 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
ps 0.0 0.0 0.0 0.0 0.05 0.95 0.0 0.0
pdf 0.0 0.0 0.6 0.05 0.0 0.05 0.3 0.0
c 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.95

Table 4.1: Confusion Matrix For Data Classification

4.3 Analysis of LSB planes from Stegoed and non-

Stegoed Images

In the above experiments, we measured statistics on the whole sequence of bits of the

given data. An embedding operation is performed on LSB of an image. So to detect
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the perturbation due to steganographic operation, we measure statistics only of LSB of

images. In this direction, we first consider only two classes : one is LSB obtained from

non-stegoed image and the other is LSB obtained from images with 50% embedding. For

our experiments described in this section, we use a random embedding instead of using

any particular steganographic tool. This random embedding satisfies the assumptions

stated in Section 3.5. We are conducting separate studies on different types of tools. The

feature vector µ defined above is computed on LSB of 30 colour images (3 colors/image)

from both classes. We take different sample each color. So we obtain a total 180 µ

vectors on LSB bit planes. (i.e. 30Images*3bitplanes/image*2classes). Out of these, 150

µ vectors are used for training SVM and 30 for testing. Thus we have two classes,

1. LSB plane of non-Stegoed image. 2. LSB plane of stegoed image.

We present the results of classification using SVM in a confusion matrix in Table 4.3.

non-Stego Stegoed Image
non-Stego 0.67 0.33

Stegoed Image 0.0 1.0

Table 4.2: Confusion Matrix For 2 Category LSB Classification

The overall accuracy of classification is 85%.

This clearly indicates that the feature vector µ defined above is powerful enough to detect

the presence of steganographic operations. To explore its power in discriminating the

level of embedding, we consider the four category classification problem with four classes:

Class 1. LSB plane of non-Stegoed image. Class 2. LSB plane of 25% stegoed image.

Class 3. LSB plane of 50% Stegoed image. Class 4. LSB plane of 75% stegoed image.

0% 25% 50% 75%
0% 0.6 0.0 0.33 0.07
25% 0.0 0.6 0.27 0.13
50% 0.0 0.0 0.4 0.6
75% 0.0 0.0 0.0 1.0

Table 4.3: Confusion Matrix For 4 Category LSB Classification

The confusion matrix for this experiment is in Table 4.3. The overall classification ac-

curacy is 65%. Thus, this indicates that the statistical measures alone are not sufficient

for detection of levels of embedding. The reason is that image is a 2D signal and our

statistics are based on sequential traversal of image bytes. We take alternative approach

in the next chapter.
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Chapter 5

Steganalysis : Wavelet Transforms

Our feature vector µ considers a linear sequence of bits as input. However, image

properties are in general captured more accurately by two dimensional transforms. Our

goal is to classify images accurately under different levels of embedding. The approaches

in Section 4.2 and 4.3 serve as good handles in this direction.

To further enhance our understanding of the effects of embedding, we study the be-

havior of wavelet coefficients. Farid et al [10, 11] have shown that wavelet domain can

capture image characteristics, such as whether an image is a natural image or a computer

generated one or is a scanned one. They have shown that the feature vector given by

them can be used for universal steganalysis. Their aim was only to find whether an image

contains any kind of hidden information or not. We further explore the detection of the

level of embedding.

5.1 Hypothesis

Our motivation to study the wavelet domain, rather than pixels directly, is that the

averages in wavelet coefficients smoothen the pixel values and hence it is expected that

even minor anomalies in neighboring pixels introduced by stego operation would lead to

amplified changes in the wavelet domain. We intend to capture and attempt to calibrate

these changes w.r.t graded embedding. We consider second level wavelet sub-bands of

images. The Haar wavelet is used as the mother wavelet.

17



5.2 Notations

For our experiments, we use 15 images that do not contain any hidden information. These

are images taken with a Nikon Coolpix camera at full 8M resolution with most of images

stored in RAW format. These images are then cropped to get 800x600 images without

doing any image processing operations. Let,

I = {Ij : j = 0, 1, 2, . . . , 14} be the set of natural unstegoed images.

k : The initial LSB embedding present in an given image. i.e. k% LSB’s

of an image have been modified by steganographic operations.

Sk : The Start Image, that is an image ∈ I with k% embedding.

(k is the unknown to be detected.)

i : The forced embedding level.

(will be defined in Section 5.3)

Ski : An image ∈ I with k% original embedding and i% forced embedding.

5.3 Our Approach

Let Sk be the given image. We call this as the start image. We do additional embedding

on it to get Ski and refer this kind of embedding as ‘forced embedding ’. Our approach is

to compute some transforms on both Sk and Ski, and study a measure of the difference

between the transform coefficients for finding k. This procedure is explained with the

help of Fig. 5.1. In Fig. 5.1 the transform used is the wavelet transform.

5.4 Definitions

We consider second level wavelet sub-bands. So, each 4∗4 block in images will contribute

to exactly one wavelet coefficient in each sub-band viz. LL, LH, HL, HH. Let, We consider

the 2nd level LL sub-band coefficients, since most of the energy gets concentrated in this

sub-band.
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Figure 5.1: The process to get η

Let a 4 ∗ 4 subblock of an image be denoted by :













a b c d

e f g h

i j k l

m n o p













The 2nd level LL wavelet coefficient is given by

1
4
∗ (a + b + c + d + e + f + g + h

+i + j + k + l + m + n + o + p)

(Note : The 2nd Level LL sub-band size is 1
4

th
of the original image size in both directions.)

The LH coefficient is given by

1

4
∗ {(a + b + e + f + +i + j + m + n) − (c + d + g + h + k + l + o + p)}
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The HL coefficient is given by

1
4
∗ {(a + b + c + d + e + f + g + h)

−(i + j + k + l + m + n + o + p)}

The HH coefficient is given by

1
4
∗ {(a + b + e + f + k + l + o + p) −

(c + d + g + h + i + j + m + n)}

Let the image Sk be considered as made up of 4 ∗ 4 blocks.

Let P denote a 4 ∗ 4 block in Sk. P = (uij)

and P ′ denote corrosponding 4 ∗ 4 block in Ski. P ′ =
(

u′

ij

)

We define the following random variables,

X0 = #{|
∑

(

uij − u′

ij

)

| 6= 0 : for all non-overlapping blocks P in Sk}

X1 = |
∑

(

uij − u′

ij

)

| over non-overlapping blocks P in Sk

X2 =
∑

(

uij − u′

ij

)

over non-overlapping blocks P in Sk

η =
X0 ∗ 500

image size in pixels

Γki
W = SNR between 2nd level LL sub-band of Ski and Sk

We have chosen the factor 500 to normalize the quantity η to be near 100 for the size of

images being considered (800 ∗ 600).
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5.5 Analysis

Let,

p = probability of LSB of pixel in a 4 ∗ 4block be even i.e. ‘0’ in Cover S

p′ = probability of LSB of pixel in the 4 ∗ 4block be even i.e. ‘0’ in Sk

=
k

2
+ (1 − k) ∗ p

(under assumptions stated in 3.5)

p′′ = probability of LSB of pixel in the 4 ∗ 4block be even i.e. ‘0’ in Ski

=
i

2
+ (1 − i) ∗ p′

Pr = probability of a particular 2nd level LL wavelet coefficient in Ski is different

from corresponding wavelet coefficient in Sk (5.1)

E[X0] =
Image Size in Pixels

4 ∗ 4
∗ Pr

⇒

E[X0] ∝ Pr

Let,

ηki = expected value of η with k% initial embedding and i% forced embedding.

Theorem :

i. ηki increases with i and decreases slightly with k.

ii. Γki
W increase with increase in k.

Proof: Observe that,

ηki ∝ E[X0] ∝ Pr
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Pr = 1 − prob{|
∑

(

uij − u′

ij

)

| = 0}

= 1 − prob{No pixel in the particular 4 ∗ 4

block has been replaced with data bits

OR

2 pixels have been replaced with data bits

in such way that one pixel value

increases by 1 and other decreases by 1

OR

4 pixels have been replaced with data bits

in such way that two pixel value

increases by 1 and other decreases by 1
...

OR

16 pixels have been replaced by data bits

in such way that for 8 pixels the value

increases by 1 and other decreases by 1}

= 1 − {(1 − i/2)16

+(1 − i/2)14 ∗ (i/2)2 ∗ 16C2 ∗ p′ ∗ (1 − p′) ∗
2!

1! ∗ 1!

+(1 − i/2)12 ∗ (i/2)4 ∗ 16C4 ∗ p′2 ∗ (1 − p′)2 ∗
4!

2!2!

+(1 − i/2)10 ∗ (i/2)6 ∗ 16C6 ∗ p′3 ∗ (1 − p′)3 ∗
6!

3!3!
...

+(i/2)16 ∗ 16C16 ∗ p′8 ∗ (1 − p′)8 ∗
8!

4!4!
(5.2)

It is logically correct that ηki increases with i. Also it can be seen from equation 5.2 for

Pr, that ηki increases with i for 0 ≤ i ≤ 1. This can be proved by differentiating equation

5.2 w.r.t. i or can be empirically verified with ease. A close look at the equation reveals

that Pr depends upon (p′ ∗ (1 − p′))(Some positive integer power) . Given a Start image Sk, p′ is

fixed. But which in turn depends upon p and k. (Refer to Eq. 5.1). As k increases to

values of 1, p′ goes to 1
2

irrespective of p. In general, adjacent pixels are very similar in

natural images. So, p is biased towards 0.35 or 0.65.
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⇒ p′ ∗ (1 − p′) increases as k increases,

⇒ Pr decreases as k increases.

⇒ ηki decreases as k increases.

Thus, as Pr decreases with increasing k, the number of wavelet coefficients of Sk and Ski

that are equal, increases, i.e. noise in W (Ski) w.r.t W (Sk) decreases.

⇒ Γki
W increases as k increases.

We have verified these experimentally as follows.

5.6 Results
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Figure 5.2: Graph of ηki vs ‘i’ for various ‘k’ Hide4PGP

We use the stego algorithm Hide4PGP in our experiments. In our experiments, we
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Figure 5.3: Graph of η vs ‘k’ for various at fixed forced embedding 20% for various images
Hide4PGP

use i = 10, . . . , 100. k = 0, 10, 20, 30, 40, 50. The plots of ηki vs. i for various k is as shown

in Fig. 5.2.

For a particular forced embedding say i, it can be observed that ηki decreases as k

increases. Encouraged by this monotonic trend, we now look closely at the variations in

measure η at a fixed forced embedding of i = 20%, with respect to k on different start

images. The results are shown in Fig. 5.3.

The continuous line shows the average value, ηk20 vs. k. The other curves show the η

values for the individual images. These also show the monotonic decreasing trend around

the average value. We note that such trends are quite significant especially at low levels

of 20% embedding. Thus, this serves as a first indicator for detecting approximately the

amount of embedding (even at low levels) in any given image.

It is quite difficult to conduct a large number of data generation experiments under
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various parameter choices using a public domain tool as we do not get appropriate han-

dles into the source code. Hence, in our lab we have built a tool called CSA-Tool for

simulating the behavior of S-Tool. We have taken care to incorporate our own functions

for encryption, randomized location generation and embedding analogous to the steps

performed by S-Tools. The statistical characteristics of our tools would closely resemble

those of S-Tools.

10 20 30 40 50 60 70 80 90 100
60

70

80

90

100

110

120

A
ve

ra
ge

 e
ta

 fo
r 

va
rio

s 
%

 d
at

a 
em

be
dd

ed
 in

 s
ta

rt
 im

ag
e

% forced embedding on Start image

Start image 0 % data embedded

 Start image 10 % embedded Image

Start image 20 % embedded Image

Start image 30 % embedded Image

Start image 40 % embedded Image

Start image 50 % embedded Image

Figure 5.4: Graph of ηki vs. ‘i’ for various ‘k’ CSA Tool

We performed similar experiments as detailed above using the CSA tool. Fig.5.4 and

Fig.5.5 show the results. We note that the results are along the same trends as for

Hide4PGP. However, the separations in Fig.5.4 are smaller than in Fig. 5.2 and fluctua-

tions in Fig.5.5 are more than in Fig. 5.3. A reason is that the CSA Tool (and S-Tools)

employs more strong random generators for choosing the LSB for embedding than the

tool Hide4PGP.

The plot, Γki
W vs. i for various k is as shown in Fig. 5.6. As per the theorem proved in

Section 5.5, it can be observed that for a particular forced embedding say i, Γki
W increases
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Figure 5.5: Graph of η vs. ‘k’ for various at fixed forced embedding 30% for various
images CSA Tool

as k increases. The zoomed version of Fig. 5.6, for i = 70 is shown in Fig. 5.7. Encouraged

by this monotonic trend, we now look closely at the variations in measure Γki
W at a fixed

forced embedding of i = 70%, with respect to k on different start images. The results

are shown in Fig. 5.6. The continuous line shows the average value, Γk70
W vs. k. The

other curves show the Γk70
W vs. k values for the individual images. These also show the

monotonic decreasing trend around the average value.
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Figure 5.6: Graph of Γki
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5.7 Other Experiments based on wavelet transform

based statistics

(Note : We will be discussing only the 2nd level wavelet coefficients, so it assumed im-

plicitly). We studied the distribution of wavelet coefficients of LL, HH, HL, LH bands,

similar to Farid et al [10] for the purpose of detection of the level of embedding. We

note that, Farid [10, 11] had tried just to detect whether given image contains any hidden

information or not. Some important observations we have are:

1. The LL subband is the weighted average of neighborhood pixels in 4 ∗ 4 block, it is

expected that the histogram of any color of an image and LL suband of the same

color should have similar patterns. The fig. 5.9 is for the green color LL subabnd

histogarm of B1.bmp and fig. 5.10 is the green color histogram of the same image.

It clearly verifies the fact.
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W vs. ‘i’ for various ‘k’ CSA Tool - zoomed version

2. The LH,HL,HH subands of an image follow Gaussian distribution with zero mean.

(fig. 5.11-5.13)

Apart from these, we studied the probability density functions of X1 , X2 and their

characteristic functions w.r.t. i and w.r.t. k at fixed i. These show variations w.r.t. i and

w.r.t. k. But the variations in these random variables due to embedding are not sufficient

to detect the level of embedding i.e. k. Histogram of X1 for various i when k = 0 is shown

in fig. 5.14. And Histogram of X1 for various k when i = 50 is shown in fig. 5.15

We explore the power of the ridgelet transform [14], for the purpose of steganalysis in

the next section.

5.8 Ridgelet Transforms

The use of Ridgelet transform [15] for image representation is a recent advancement in

image processing. Wavelet transforms are useful in capturing zero dimensional i.e. point
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Figure 5.8: Graph of Γki
W vs. ‘k’ for various at fixed forced embedding 70% for various

images CSA Tool

singularities. But an image is a 2-D signal and contains some one dimensional i.e. line

singularities. To handle these, first a Radon transform is used to map line singularities

to point singularities. Then the wavelet transform is used. This system is called Ridgelet

transform and was developed by Candes and Donoho [14, 15]. Minh Do has introduced

changes in the ordering of Radon transform coefficients to use it effectively for image

representation [16]. The Radon transform works on a p ∗ p size block, where p is prime

number.

We studied the use of Ridgelet transform for steganalysis. Our hypothesis is : As

Radon transform captures line singularities and any distortions along edges due to stegano-

graphic operations, should yield change in Radon coefficients.

Our approach is organized as shown in Fig. 5.1. The transform used is the Finite
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Figure 5.9: Histogram for LL of green color of B1

Ridgelet Transform (FRIT). The code for FRIT is obtained from

http://www.ifp.uiuc.edu/˜ minhdo. ( Author of [16].) We used p = 599 in our experi-

ments. For Ridglet analysis we defined the following Random Variables.

Let R(I) : denote ridglet transform coefficients of an image I. As before Sk and Ski will

denote the start image with unknown k% embedding and image with forced i% forced

embedding respectively. We consider the coefficients in R(Sk) and R(Ski).

We define, the set X1 as the collections of p largest coefficients in the set | R(Sk)−R(Ski) |.

We define X2 as the set containing p numbers from the difference of the p largest coeffi-

cients of R(Sk) and p largest coefficients of R(Ski).

We define X3 as the set containing p numbers from the difference of the p largest coeffi-

cients of R(Sk) and corresponding p largest coefficients of R(Ski).

We define X4 as coefficients of R(Sk)

Γki
R = SNR between coefficients of R(Ski) and R(Sk)

We have performed many experiments to study the behavior of the random variables

defined above. However so far none of these has led to effective detection of the level of

embedding.
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Figure 5.11: Histogram for LH of red color of B6
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Figure 5.13: Histogram for HH of red color of B6
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Chapter 6

Conclusions and Future Work

We discussed two new approaches towards analysis of stego images for detection of levels

of embedding. Our approach of using wavelet coefficient perturbations holds promise.

We will also consider a modified wavelet coefficient based measure that takes into account

the numerical changes in the pixel values introduced by embedding. We plan to use

this measure in addition to the statistical measures to arrive at finer detection. We

suggest, similar to Expectation Maximization (EM) algorithm used by Machine learning

community, for finer detection of level of embedding, the use of two phase approach,

1. First, find some rough estimate of ‘p’ (defined in Eq. 5.1) using statistical measures.

2. Then using η, Eq. 5.1, p′ estimate, k. Use this k to refine p and iterated until not

much change.

Once we have a reasonably accurate estimate of embedding, we can use a combinatorial

search as well as Bayes formula to estimate the original pixel values. This is at stage

hypothetical, and needs to be studied carefully.

The ridgelet transform is very stable with respect to steganographic operations, we

may infer that one should used for digital water marking purposes, this transform would

lead to robust watermarking schemes

We have presented some of our results of Section 5 in [20].
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