Model-checking bisimulation-based information flow properties for infinite-state systems

Raghavendra K. R. Joint work with Deepak D'Souza Dept. of CSA, IISc.

- 2 Bisimulation-based information flow properties
- 3 Model-checking pushdown systems
- 4 Model-checking Petri nets

- Set of events (Σ) partitioned into Low L and High H, Input I and Output O
- Every event has its complement
- Trace: a sequence of events
- System: Labeled Transition Systems (LTS) $M = (Q, \Sigma, \rightarrow, s)$
- Low user observes only the low events
- Information flow properties restrict the flow of information about high events to the low user

Weak bisimulation

Bisimulation-based information flow properties Model-checking pushdown systems Model-checking Petri nets Conclusion

Weak bisimulation

Weak bisimulation

Bisimulation-based information flow properties Model-checking pushdown systems Model-checking Petri nets Conclusion

Weak bisimulation

- Bisimulation game
- *M*₁ and *M*₂ are weakly bisimilar if there exists a weak bisimulation containing (*s*₁, *s*₂)

No Read Up Policy

Trace-based Strong Non-deterministic Non-interference (SNNI)

M satisfies SNNI iff $L(M \setminus H) = L(M/H)$.

Satisfies SNNI and secure.

No Read Up Policy

Trace-based Strong Non-deterministic Non-interference (SNNI)

M satisfies SNNI iff $L(M \setminus H) = L(M/H)$.

Satisfies SNNI Not secure.

No Read Up Policy

Bisimulation-based SNNI (BSNNI)

M satisfies BSNNI iff $M \setminus H \approx_B M/H$.

No Read Up Policy

Bisimulation-based SNNI (BSNNI)

M satisfies BSNNI iff $M \setminus H \approx_B M/H$.

Satisfies BSNNI. Also secure

No Read Up Policy

Bisimulation-based SNNI (BSNNI)

M satisfies BSNNI iff $M \setminus H \approx_B M/H$.

No Read Up - Bisimulation

د الله مع التي Model-checking bisimulation-based information flow properties for inf

No Read Up - Bisimulation

Does not satisfy BSNNI

Bisimulation-based properties - Focardi & Gorrieri '94

- Bisimulation-based Non-deterministic Non-interference (BNNI) - M/H ≈ (M \ (I ∩ H))/H
- ② Bisimulation-based Strong Non-deterministic Non-interference (BSNNI) - M \ H ≈ M/H
- Solution Let M' be any system with only high events. Bisimulation-based Non-Deducibility on Compositions (BNDC) - $M/H \approx (M|M') \setminus H$
- Strong BNNI (SBNNI) For all reachable states q, M_q satisfies BNNI
- Strong BSNNI (SBSNNI) For all reachable states q, M_q satisfies BSNNI
- Strong BNDC (SBNDC) For all $q \xrightarrow{h} r$ in $M, M_q \setminus H \approx M_r \setminus H$

Bisimulation-based properties - Focardi & Gorrieri '94

- Bisimulation-based Non-deterministic Non-interference (BNNI) - M/H ≈ (M \ (I ∩ H))/H
- ② Bisimulation-based Strong Non-deterministic Non-interference (BSNNI) - M \ H ≈ M/H
- Solution Let M' be any system with only high events. Bisimulation-based Non-Deducibility on Compositions (BNDC) - $M/H \approx (M|M') \setminus H$
- Strong BNNI (SBNNI) For all reachable states q, M_q satisfies BNNI
- Strong BSNNI (SBSNNI) For all reachable states q, M_q satisfies BSNNI

Strong BNDC (SBNDC) For all $q \xrightarrow{h} r$ in $M, M_q \setminus H \approx M_r \setminus H$

Shown decidability for finite-state systems.

Pushdown systems

Example

$$p \xrightarrow{(} p \text{ push } A;$$

 $p \xrightarrow{)} p \text{ pop } A;$

ৰ াচ ৰ ব্লি চ ৰ ইচ ৰ ইচ হ হ তিও ্ে Model-checking bisimulation-based information flow properties for inf

Pushdown systems

- Induces a possibly infinite transition system
- Bisimilarity on the induced transitions systems

Checking weak bisimilarity for PDS

- Srba '02: undecidable reducing the halting problem of 2 counter machines.
- Given a 2 counter machine *R*, construct *P_R* and two states *p*₁α and *p*₂β such that *R* halts iff *p*₁α ≉ *p*₂β.
- Doesn't imply undecidability for bisimulation-based properties directly.

Checking weak bisimilarity for PDS

- Srba '02: undecidable reducing the halting problem of 2 counter machines.
- Given a 2 counter machine *R*, construct *P_R* and two states *p*₁α and *p*₂β such that *R* halts iff *p*₁α ≉ *p*₂β.
- Doesn't imply undecidability for bisimulation-based properties directly.

Observations

- $p_1 \alpha$ has no ϵ -transitions
- if there is a winning strategy for the attacker from (*p*₁α, *p*₂β) then there is one starting with *p*₁α

Checking weak bisimilarity for PDS

- Srba '02: undecidable reducing the halting problem of 2 counter machines.
- Given a 2 counter machine *R*, construct *P_R* and two states *p*₁α and *p*₂β such that *R* halts iff *p*₁α ≉ *p*₂β.
- Doesn't imply undecidability for bisimulation-based properties directly.

Observations

- $p_1 \alpha$ has no ϵ -transitions
- if there is a winning strategy for the attacker from (*p*₁α, *p*₂β) then there is one starting with *p*₁α

Corollary

The restricted PDS bisimulation problem is undecidable

Model-checking bisimulation-based information flow properties for inf

Checking BSNNI for PDS

- Reducing the restricted PDS bisimulation problem
- Construct P' from P such that p₁α ≈ p₂β in M_P iff M_{P'} satisfies BSNNI.

Checking BSNNI for PDS

- Reducing the restricted PDS bisimulation problem
- Construct P' from P such that p₁α ≈ p₂β in M_P iff M_{P'} satisfies BSNNI.

•
$$\Sigma' = \Sigma \cup \{k, \overline{k}\}, H = I = \{k, \overline{k}\}$$

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for *M*_{P'}, Checking BNNI is also undecidable

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for *M*_{P'}, Checking BNNI is also undecidable
- LTS *M* with only k, \bar{k} events

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for *M*_{P'}, Checking BNNI is also undecidable
- LTS *M* with only k, \bar{k} events
- Consider $(M_{P'}|M) \setminus H$

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for *M*_{P'}, Checking BNNI is also undecidable
- LTS *M* with only k, \bar{k} events
- Consider $(M_{P'}|M) \setminus H$
- $(q\gamma, m) \equiv (q'\gamma', m')$ iff $q\gamma = q'\gamma'$

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for *M*_{P'}, Checking BNNI is also undecidable
- LTS *M* with only k, \bar{k} events
- Consider $(M_{P'}|M) \setminus H$
- $(q\gamma, m) \equiv (q'\gamma', m')$ iff $q\gamma = q'\gamma'$
- Let $N = (M_{P'}|M) \setminus H/ \equiv$

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for *M*_{P'}, Checking BNNI is also undecidable
- LTS *M* with only k, \bar{k} events
- Consider $(M_{P'}|M) \setminus H$
- $(q\gamma, m) \equiv (q'\gamma', m')$ iff $q\gamma = q'\gamma'$
- Let $N = (M_{P'}|M) \setminus H / \equiv$
- $N \approx (M_{P'}|M) \setminus H$

Checking properties for PDS

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for *M*_{P'}, Checking BNNI is also undecidable
- LTS *M* with only k, \bar{k} events
- Consider $(M_{P'}|M) \setminus H$
- $(q\gamma, m) \equiv (q'\gamma', m')$ iff $q\gamma = q'\gamma'$
- Let $N = (M_{P'}|M) \setminus H / \equiv$
- $N \approx (M_{P'}|M) \setminus H$
- $p_1 \alpha \approx p_2 \beta$ in M_P iff $M_{P'}/H \approx N$.
- Checking BNDC is undecidable

Theorem

Checking each of the properties for PDS is undecidable.

Model-checking bisimulation-based information flow properties for inf

Weak bisimulation Model-checking pushdown systems Model-checking Petri nets

・ロト ・四ト ・ヨト ・ヨト Model-checking bisimulation-based information flow properties for inf

æ

Weak bisimulation Model-checking pushdown systems Model-checking Petri nets

・ロト ・四ト ・ヨト ・ヨト Model-checking bisimulation-based information flow properties for inf

æ

Induces a possibly infinite transition system on markings

Checking weak bisimilarity for Petri nets

- Jancar '94: undecidable reduction from halting problem of 2 counter machines to the strong bisimilarity problem.
- Weak bisimilarity problem is also undecidable.
- Given a 2 counter machine *R*, construct N₁ and N₂ with initial markings M₁ and M₂ respectively such that *R* halts iff M₁ ≉ M₂.
- Doesn't imply undecidability for bisimulation-based properties directly.

Checking weak bisimilarity for Petri nets

- Jancar '94: undecidable reduction from halting problem of 2 counter machines to the strong bisimilarity problem.
- Weak bisimilarity problem is also undecidable.
- Given a 2 counter machine *R*, construct N₁ and N₂ with initial markings M₁ and M₂ respectively such that *R* halts iff M₁ ≉ M₂.
- Doesn't imply undecidability for bisimulation-based properties directly.

Similar Observations

Checking BSNNI for Petri nets

< □ > < ∂ > < ≥ > < ≥ > < ≥
Second properties for inf

Checking BSNNI for Petri nets

Theorem

Checking each of the properties for Petri nets is undecidable

Model-checking bisimulation-based information flow properties for inf

Model checking each of the bisimulation-based information flow properties for

- pushdown systems
- Petri nets
- process algebras

is undecidable.

Research lines

- Semantic characterization of different properties.
- Deterministic PDS weak bisimilarity is decidable
- Totally normed BPA, totally normed BPP