Model-checking bisimulation-based information flow properties for infinite-state systems

Raghavendra K. R.
Joint work with Deepak D'Souza
Dept. of CSA, IISc.
(1) Weak bisimulation
(2) Bisimulation-based information flow properties
(3) Model-checking pushdown systems

4 Model-checking Petri nets
(5) Conclusion

System model

- Set of events (Σ) partitioned into Low L and High H, Input I and Output O
- Every event has its complement
- Trace: a sequence of events
- System: Labeled Transition Systems (LTS) $M=(Q, \Sigma, \rightarrow, s)$
- Low user observes only the low events
- Information flow properties restrict the flow of information about high events to the low user

Weak bisimulation

Weak bisimulation

- Bisimulation game
- M_{1} and M_{2} are weakly bisimilar if there exists a weak bisimulation containing (s_{1}, s_{2})

No Read Up Policy

Trace-based Strong Non-deterministic Non-interference (SNNI)

M satisfies SNNI iff $L(M \backslash H)=L(M / H)$.
Satisfies SNNI and secure.

No Read Up Policy

Trace-based Strong Non-deterministic Non-interference (SNNI)

M satisfies SNNI iff $L(M \backslash H)=L(M / H)$.
Satisfies SNNI Not secure.

No Read Up Policy

Bisimulation-based SNNI (BSNNI)

No Read Up Policy

Bisimulation-based SNNI (BSNNI)

M satisfies BSNNI iff $M \backslash H \approx_{B} M / H$.
Satisfies BSNNI. Also secure

No Read Up Policy

Bisimulation-based SNNI (BSNNI)

No Read Up - Bisimulation

Model-checking bisimulation-based information flow properties for inf

No Read Up - Bisimulation

Does not satisfy BSNNI

Bisimulation-based properties - Focardi \& Gorrieri '94

(1) Bisimulation-based Non-deterministic Non-interference (BNNI) $-\mathrm{M} / \mathrm{H} \approx(M \backslash(\mathrm{I} \cap \mathrm{H})) / \mathrm{H}$
(2) Bisimulation-based Strong Non-deterministic Non-interference (BSNNI) $-\mathrm{M} \backslash \mathrm{H} \approx M / \mathrm{H}$
(3) Let M^{\prime} be any system with only high events. Bisimulation-based Non-Deducibility on Compositions (BNDC) $-M / H \approx\left(M \mid M^{\prime}\right) \backslash H$
(4) Strong BNNI (SBNNI) For all reachable states q, M_{q} satisfies BNNI
(6) Strong BSNNI (SBSNNI) For all reachable states q, M_{q} satisfies BSNNI
(6) Strong BNDC (SBNDC) For all $q \xrightarrow{h} r$ in $M, M_{q} \backslash \mathrm{H} \approx M_{r} \backslash \mathrm{H}$

Bisimulation-based properties - Focardi \& Gorrieri '94

(1) Bisimulation-based Non-deterministic Non-interference (BNNI) $-\mathrm{M} / \mathrm{H} \approx(M \backslash(\mathrm{I} \cap \mathrm{H})) / \mathrm{H}$
(2) Bisimulation-based Strong Non-deterministic Non-interference (BSNNI) $-\mathrm{M} \backslash \mathrm{H} \approx M / \mathrm{H}$
(3) Let M^{\prime} be any system with only high events. Bisimulation-based Non-Deducibility on Compositions (BNDC) $-M / H \approx\left(M \mid M^{\prime}\right) \backslash H$
(4) Strong BNNI (SBNNI) For all reachable states q, M_{q} satisfies BNNI
(6) Strong BSNNI (SBSNNI) For all reachable states q, M_{q} satisfies BSNNI
(6) Strong BNDC (SBNDC) For all $q \xrightarrow{h} r$ in $M, M_{q} \backslash \mathrm{H} \approx M_{r} \backslash \mathrm{H}$

Shown decidability for finite-state systems.

Pushdown systems

Example
 $p \xrightarrow{(} p$ push A;
 $p \xrightarrow{\text { }} \mathrm{p} \operatorname{pop} A$;

Pushdown systems

Example
 $p \xrightarrow{(} p$ push A;
 $p \xrightarrow{\text { }} \mathrm{p} \operatorname{pop} A$;

- Induces a possibly infinite transition system
- Bisimilarity on the induced transitions systems

Checking weak bisimilarity for PDS

- Srba '02: undecidable - reducing the halting problem of 2 counter machines.
- Given a 2 counter machine R, construct P_{R} and two states $p_{1} \alpha$ and $p_{2} \beta$ such that R halts iff $p_{1} \alpha \not \approx p_{2} \beta$.
- Doesn't imply undecidability for bisimulation-based properties directly.

Checking weak bisimilarity for PDS

- Srba '02: undecidable - reducing the halting problem of 2 counter machines.
- Given a 2 counter machine R, construct P_{R} and two states $p_{1} \alpha$ and $p_{2} \beta$ such that R halts iff $p_{1} \alpha \not \approx p_{2} \beta$.
- Doesn't imply undecidability for bisimulation-based properties directly.

Observations

- $p_{1} \alpha$ has no ϵ-transitions
- if there is a winning strategy for the attacker from $\left(p_{1} \alpha, p_{2} \beta\right)$ then there is one starting with $p_{1} \alpha$

Checking weak bisimilarity for PDS

- Srba '02: undecidable - reducing the halting problem of 2 counter machines.
- Given a 2 counter machine R, construct P_{R} and two states $p_{1} \alpha$ and $p_{2} \beta$ such that R halts iff $p_{1} \alpha \not \approx p_{2} \beta$.
- Doesn't imply undecidability for bisimulation-based properties directly.

Observations

- $p_{1} \alpha$ has no ϵ-transitions
- if there is a winning strategy for the attacker from $\left(p_{1} \alpha, p_{2} \beta\right)$ then there is one starting with $p_{1} \alpha$

Corollary

The restricted PDS bisimulation problem is undecidable

Checking BSNNI for PDS

- Reducing the restricted PDS bisimulation problem
- Construct P^{\prime} from P such that $p_{1} \alpha \approx p_{2} \beta$ in M_{P} iff $M_{P^{\prime}}$ satisfies BSNNI.

Checking BSNNI for PDS

- Reducing the restricted PDS bisimulation problem
- Construct P^{\prime} from P such that $p_{1} \alpha \approx p_{2} \beta$ in M_{P} iff $M_{P^{\prime}}$ satisfies BSNNI.
- $\Sigma^{\prime}=\Sigma \cup\{k, \bar{k}\}, \mathrm{H}=\mathrm{I}=\{k, \bar{k}\}$

Figure: M_{P}

Figure: $M_{P^{\prime}} \backslash \mathrm{H}$

Checking properties for PDS

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for M $M_{P^{\prime}}$, Checking BNNI is also undecidable

Checking properties for PDS

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for $M_{P^{\prime}}$, Checking BNNI is also undecidable
- LTS M with only k, \bar{k} events

Checking properties for PDS

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for $M_{P^{\prime}}$, Checking BNNI is also undecidable
- LTS M with only k, \bar{k} events
- Consider $\left(M_{P^{\prime}} \mid M\right) \backslash H$

Checking properties for PDS

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for $M_{P^{\prime}}$, Checking BNNI is also undecidable
- LTS M with only k, \bar{k} events
- Consider $\left(M_{P} \mid M\right) \backslash H$
- $(q \gamma, m) \equiv\left(q^{\prime} \gamma^{\prime}, m^{\prime}\right)$ iff $q \gamma=q^{\prime} \gamma^{\prime}$

Checking properties for PDS

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for $M_{P^{\prime}}$, Checking BNNI is also undecidable
- LTS M with only k, \bar{k} events
- Consider $\left(M_{P} \mid M\right) \backslash \mathrm{H}$
- $(q \gamma, m) \equiv\left(q^{\prime} \gamma^{\prime}, m^{\prime}\right)$ iff $q \gamma=q^{\prime} \gamma^{\prime}$
- Let $N=\left(M_{P^{\prime}} \mid M\right) \backslash H / \equiv$

Checking properties for PDS

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for $M_{P^{\prime}}$, Checking BNNI is also undecidable
- LTS M with only k, \bar{k} events
- Consider $\left(M_{P} \mid M\right) \backslash \mathrm{H}$
- $(q \gamma, m) \equiv\left(q^{\prime} \gamma^{\prime}, m^{\prime}\right)$ iff $q \gamma=q^{\prime} \gamma^{\prime}$
- Let $N=\left(M_{P^{\prime}} \mid M\right) \backslash \mathrm{H} / \equiv$
- $N \approx\left(M_{P} \mid M\right) \backslash H$

Checking properties for PDS

- Checking BSNNI is undecidable
- BNNI is same as BSNNI for $M_{P^{\prime}}$, Checking BNNI is also undecidable
- LTS M with only k, \bar{k} events
- Consider $\left(M_{P^{\prime}} \mid M\right) \backslash \mathrm{H}$
- $(q \gamma, m) \equiv\left(q^{\prime} \gamma^{\prime}, m^{\prime}\right)$ iff $q \gamma=q^{\prime} \gamma^{\prime}$
- Let $N=\left(M_{P^{\prime}} \mid M\right) \backslash H / \equiv$
- $N \approx\left(M_{P} \mid M\right) \backslash H$
- $p_{1} \alpha \approx p_{2} \beta$ in M_{P} iff $M_{P^{\prime}} / H \approx N$.
- Checking BNDC is undecidable

Theorem

Checking each of the properties for PDS is undecidable.

Petri nets

Model-checking bisimulation-based information flow properties for inf

Petri nets

Model-checking bisimulation-based information flow properties for inf

Petri nets

Induces a possibly infinite transition system on markings

Checking weak bisimilarity for Petri nets

- Jancar '94: undecidable - reduction from halting problem of 2 counter machines to the strong bisimilarity problem.
- Weak bisimilarity problem is also undecidable.
- Given a 2 counter machine R, construct N_{1} and N_{2} with initial markings M_{1} and M_{2} respectively such that R halts iff $M_{1} \not \approx M_{2}$.
- Doesn't imply undecidability for bisimulation-based properties directly.

Checking weak bisimilarity for Petri nets

- Jancar '94: undecidable - reduction from halting problem of 2 counter machines to the strong bisimilarity problem.
- Weak bisimilarity problem is also undecidable.
- Given a 2 counter machine R, construct N_{1} and N_{2} with initial markings M_{1} and M_{2} respectively such that R halts iff $M_{1} \not \approx M_{2}$.
- Doesn't imply undecidability for bisimulation-based properties directly.

Similar Observations

Corollary

The restricted PN bisimulation problem is undecidable

Checking BSNNI for Petri nets

Checking BSNNI for Petri nets

Theorem

Checking each of the properties for Petri nets is undecidable

Summary

Model checking each of the bisimulation-based information flow properties for

- pushdown systems
- Petri nets
- process algebras
is undecidable.

Research lines

- Semantic characterization of different properties.
- Deterministic PDS - weak bisimilarity is decidable
- Totally normed BPA, totally normed BPP

