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Abstract

Obtaining a precise and safe estimate of the Worst Case Execution Time(WCET) of

executables is an important problem for real-time systems. Modelling the underlying

micro-architecture, especially the caches, while determining the WCET estimates has

an enormous impact on its precision. Large amounts of research work has concentrated

on predicting the cache contents to precisely estimate the execution time of memory-

accessing instructions. Must Analysis is one of the most widely used techniques to

provide a safe estimate of cache contents, but is known to be highly imprecise. In our

work, we propose to use May Analysis to assist the Must Analysis cache update and make

it more precise for a class of programs. We prove the safety of our approach as well as

provide examples where our Improved Must Analysis provides better precision. Further,

we also detect a serious flaw in the original Persistence Analysis, and use Must and

May Analysis to assist the Persistence Analysis cache update, to make it safe and more

precise than the known solutions to the problem. Finally, we give a definitive multi-level

cache analysis, which is a simple extension of single-level cache analysis framework. Our

analysis takes into account the writeback effect, and we use the novel idea of partial and

pseudo cache blocks to improve the precision of multi-level joins in Must analysis. Our

experiments show that using partial blocks can result in an improvement in precision

as high as 25.16%. We also provide a safe and precise way of performing May and

Persistence Analysis for multi-level caches in the presence of write-backs.
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Chapter 1

Introduction

Task Scheduling on hard and soft real systems generally requires an estimate of the

WCET of the programs to be scheduled. The estimate must be safe, i.e. no run of the

program should go beyond the WCET time, and as precise as possible, to optimize the

scheduling and minimize the wastage of resources. For better precision of the WCET

estimate, just a high-level analysis at the code level is not sufficient. Low-level analy-

sis using the details of the architecture on which the program is to be run is equally

important. Cache memories are one of the most important components in a system at

the hardware level. As the processors used in modern real-time systems become faster

and faster, the gap between the processor speed and memory speed continues to widen.

As a result, almost all real time systems today use cache memories, which provide good

access rates, although only for a limited subset of the main memory.

For the purpose of estimation, keeping track of this dynamically changing subset

of memory in the cache is crucial, as the difference between access time for memory

blocks in the cache to those not in the cache is generally of the order of tens of processor

cycles. Moreover, most real-world programs generally spend a significant portion of their

execution time in fetching data to/from memory. Hence, taking the pessimistic option of

classifying every memory access as a cache miss will significantly blow the estimate. On

the other hand, most of the cache replacement algorithms that control the contents of

the cache are deterministic, and hence it is possible to safely estimate the cache contents.

1



Chapter 1. Introduction 2

In order to further decrease the wide gap between processor speed and main memory

speed, modern processors today use multiple levels of cache memory. The higher cache

levels provide respectable access rates and at the same time, accomodate more mem-

ory blocks, thus preventing the sudden jump from the L1 cache to the main memory.

Moreover, the usefulness of multi-level caches increases with the advent of multi-cores,

as cores can share a higher level cache to facilitate data sharing and at the same time,

have private lower level caches. The higher level caches can also shield lower caches from

cache coherency issues.

The Abstract Interpretation based approach for WCET estimation combines analysis

at code level and architecture level by abstracting important details of both the code

to be analyzed as well as the system on which the program is to run. The approach

goes as follows: The first phase is Address Analysis, where we obtain a safe estimate of

the set of cache blocks which will be accessed by each instruction in the program. The

next step is abstract interpretation based cache analysis, which uses the accessed cache

blocks computed by address analysis to determine the worst case execution time of each

instruction in the program. In this step, details of the system architecture such as cache

levels, associativity, block size, instruction latencies, etc. can be modelled. Using this,

we calculate the worst case execution time of each basic block in the program. Then

we build an Integer Linear Program(ILP), using the WCET of basic blocks, subject to

structural constraints and loop bounds(thus incorporating the program structure), to

determine the worst case execution path in the program.

The primary focus of our work is in the Cache Analysis phase. We use the previous

work of Rathijit Sen for Address Analysis and ILP formulation[10] and do not make any

changes to it. Safety is of paramount importance while estimating WCET of programs

for hard(or even soft) real time systems, and Must Analysis is one of the few techniques

for cache analysis which has been proven safe theoretically. Since Must Analysis provides

guarantees for cache blocks present in the cache across all executions, precision is severely

compromised. The issue of precision is more severe in Data cache Must Analysis, because

Address Analysis for Data caches is imprecise and frequently gives a non-singleton set of
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cache blocks accessed by an instruction(especially for instructions inside loops). For such

multi-reference accesses, the original Must Analysis does not bring any of the accessed

cache blocks to the Must cache, but simply makes the existing cache blocks older. This

will result in the Must cache becoming empty even for simple programs with accesses

inside loops, where even a quick manual analysis can reveal that the Must cache should

not be empty.

We use the May Analysis to tackle this issue. May Analysis determines all cache

blocks that may enter the cache under all executions, and this information can be used

by the Must Analysis to deduce that some cache blocks must remain in the cache, as

there are just not enough younger cache blocks which may force eviction. Another cache

analysis which has been widely used for WCET estimation and which does not suffer

from the precision issue is Persistence Analysis. Persistence Analysis cannot classify

cache accesses as always hit or always miss, but instead classifies accesses inside loops

as first miss, which means that the first access to a block may or may not find it in the

cache, but all the other accesses to it will definitely be satisfied by the cache. There

is a safety issue with the original Persistence Analysis given by [12], and in our work,

we pinpoint the reason behind the lack of safety in the Persistence Cache update. We

propose to use both Must and May Analysis to rectify the safety issue. Others have

identified similar issues with Persistence Analysis, in [4] and [7]. Our solution is more

precise than the solutions proposed in both the papers, and we give examples where our

approach is able to detect more persistent blocks.

We also propose a new framework for multi-level cache analysis. For single level

caches, the Address Analysis provides the set of memory blocks to be accessed by each

instruction as an input to the cache analysis phase. However, for multi-level caches, the

set of accessed blocks at each level depends upon the contents of the lower level caches,

and need to be determined by the cache analysis algorithm itself. In a non-inclusive cache

hierarchy with writeback, new memory blocks which are brought in move from higher

levels to lower levels, and at the same time, dirty memory blocks evicted by lower lowels

move towards higher levels. Hence, there is a flow in both directions, which needs to be



Chapter 1. Introduction 4

taken into account, while maintaining safe estimates and being as precise as possible.

We use three different analyses - Must Analysis, May Analysis and Persistence Anal-

ysis to determine the cache contents. As far as we know, this is the first effort for

performing Persistence Analysis in Multi-level caches in the presence of writebacks. We

extend the classical abstract lattice used for single level caches to the entire cache hier-

archy. Following are some of the important features of our framework:

• A definitive version of Multi-level cache analysis which accurately simulates the

writeback effect for a write-allocate, write-back, non-inclusive cache hierarchy.

• Takes into account all the optimizations for join in Multi-level Must analysis as

pointed out by [11], through the novel use of partial and pseudo blocks in the cache

hierarchy.

• Performs both May and Persistence analysis in addition to Must analysis, and

provides a safe approach to perform these analyses for Multi-level caches.

• Uses the improved Must analysis and Persistence Analysis which uses the results

of May analysis in its transfer function, providing better precision for higher level

caches.



Chapter 2

Related Work

Abstract Interpretation is one of the more successful techniques employed for Cache

Analysis. The pioneering work was done by [2] and [12], who proposed the abstract

lattice for the cache analysis, as well as the transfer functions for Must Analysis, May

analysis and Persistence Analysis[5]. Much of the earlier work in this area was limited

to Instruction Caches, as address analysis for instruction caches yields precise results[9].

Earlier work on Cache Analysis for data caches concentrated more on finding techniques

to make the address analysis more precise[13].

[4] points out the error in the original Persistence Analysis, and they argue that it

arises because of mismatched cache update and join function. They propose to use May

Analysis to count the total number of cache blocks that may be present in the cache, and

deny any evictions from the Persistence cache if this count is less than the associativity.

[7] augments the persistence analysis by keeping track of younger sets of all cache blocks

that may enter the cache, and uses their cardinalities to perform safe cache update.

[6] proposed a natural extension to the single-level cache analysis of [2] for multi-level

instruction caches. They concentrate on the filtering effect of lower level caches on the

accesses to the higher level caches. [8] applies the same approach to multi-level Data

caches. However, both approaches are limited to a write-no-allocate, write-through, non-

inclusive cache hierarchy, and hence ignore the writeback effect. While their approach

uses the Must, May and Persistence Analysis, they consider each cache level separately,

5



Chapter 2. Related Work 6

and run these analyses to fixpoint independently on each cache level, from lower to higher

levels. Our Analysis treats the entire cache hierarchy as a single unit, and the three

analyses run to fixpoint for the entire cache hierarchy. This approach has the advantage

of improving the precision of the Must Analysis. As we will show later, knowing the state

of the entire hierarchy at all times allows us to collaborate information across cache levels.

Our analysis also targets a write-allocate, write-back non-inclusive cache hierarchy. [11]

proposes a radically different approach to Multi-level Data cache Analysis, where they

form pairs of cache levels and track the contents of these pairs which they call ‘live

caches’ to incorporate the writeback effect. In our work, we extend the original, simple

cache model used for single-level caches, and using known analysis techniques like Must,

May and Persistence Analysis, we are able to solve the issues caused by writeback.



Chapter 3

Cache Analysis Terminology

Caches store fixed size chunks of memory in cache blocks(also called memory blocks or

cache lines). All the data transfer to/from the cache takes place in the units of linesize(i.e.

size of cache block). Given a memory reference x, x/linesize gives the address of the

cache block containing x. Given a cache block address, deciding where in the cache the

block will be stored depends upon the cache associativity. In a fully-associative cache,

a cache block can be placed anywhere, while in a direct-mapped cache, there is a fixed

location for each cache block. Set-associative caches are organized in terms of cache sets,

which are collections of cache blocks. In set-associative caches, the cache set containing

a cache block is unique, but within the set the cache block can be placed at any location.

A cache Cx with total size capacityx, cache block size linesizex and associativity Ax has

blocksx = capacityx/linesizex cache blocks which are distributed in setsx = blocksx/Ax

sets. A cache block with address addrx will be present in the set addrx%setsx.

In an A-way set associative cache, if a set is full and another cache block needs to

be brought into this set, then the cache replacement policy decides which of the A cache

blocks needs to be evicted. LRU(Least Recently Used) is one such policy, which selects

the cache block that has stayed the longest in the set without any references to it, to

be evicted. Temporal locality dictates that such cache blocks have less chances of being

referenced, and hence more optimal to being replaced. We will assume that the cache

replacement policy is LRU. In each set, we will order the cache blocks by their last

7



Chapter 3. Cache Analysis Terminology 8

accesses, and the position at which the cache block resides will be its age. This has no

relation, whatsoever, with the actual physical arrangement in the cache set.

For a multi-level cache hierarchy, the cache inclusion policy is equally important as

the cache replacement policy in determining the contents of different levels of the cache.

In a strictly inclusive cache hierarchy, every cache level is a strict subset of higher cache

levels. Note that lower cache levels are closer to the processor, and as we go up, we get

closer to the main memory. To maintain the subset relation, whenever a cache block is

brought into a cache level, it is also brought into all lower cache levels. While evicting a

cache block from a cache level, it is also evicted from all lower cache levels(if it is present

in the lower levels). If this eviction policy is relaxed and evictions across levels are

allowed to be independent of each other, the cache hierarchy is called non-inclusive(or

partially inclusive). Hence, non-inclusive cache hierarchies allow lower level caches to

contain cache blocks which are not present in higher level caches.

In a non-inclusive cache hierarchy, on a memory access from the processor, cache

levels are searched in increasing order starting from L1 cache. A miss at cache level Lx

brings the accessed cache block to level Lx(and also makes it the most recently accessed

block at level x). A hit at level Lx makes the accessed block the most recently accessed

at level x, and cache levels above level x are not touched.

Generally writes to cache blocks are treated differently from reads. If a cache hier-

archy follows a writethrough, write-no-allocate policy then for a write miss, the cache

block being written is not even brought into the cache, and the change is made directly

to the main memory. For a write hit, the change is still propagated all the way to the

main memory. Hence, every write request suffers main memory latency, irrespective of

whether the requested cache block is present in the cache or not. In the writeback,

write-allocate policy, writes are treated identically as reads, except that a write to a

cache block marks it as dirty. That is, the cache block being written will become the

most recently accessed cache block (for a write miss, it would be brought into the cache

as well). On eviction, a dirty cache block is not simply thrown out, but is instead written

to the next cache level, and this write to the next level is treated as a normal processor
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write. This means that this evicted cache block written to the next level is now the most

recently accessed block at that level. On eviction from the highest cache level, the dirty

cache block is finally written to the main memory.

To summarize, in a non-inclusive cache hierarchy with writeback, write-allocate pol-

icy, on a write request from the processor, cache levels are searched in increasing order

starting from L1 cache. A write miss at cache level Lx brings the accessed cache block

to the level Lx in a dirty state(also making it the most recently accessed block). A write

hit at level Ly makes the accessed block dirty as well as most recently accessed. When

a cache block marked as dirty is evicted from level Lx, it is brought into level Lx+1,

marked as dirty as well as most recently accessed. In our Analysis, we will assume a

cache hierarchy with these properties.

Abstract interpretation[3] is a static program analysis technique which formalizes

the data flow analyses used in Compilers. For WCET analysis, safety is one of the

paramount requirements, and abstract interpretation provides a method for formally

proving the safety of our analysis. For using abstract interpretation, one needs to specify

the concrete lattice, which is generally the power set lattice of program property of

interest. In our case, we are interested in the entire state of the cache hierarchy-i.e.

the cache blocks inside each level, their ages and their dirty-states. Note that the main

memory is finite, and at all times, the cache hierarchy contains only a subset of the

main memory. Hence, the number of cache hierarchy states is also finite. We extend the

concrete lattice specified in [2] to multiple levels. Below, we define the concrete states

formally:

A cache hierarchy F is the set F = {F1, . . . , Fn}, where Fx are cache levels. Each

cache level Fx is the set Fx = {f1,x, f2,x, . . . , fsetsx,x}, where fi,x are the cache sets in the

xth cache level. Each cache set fi,x is the set fi,x = {l1i,x, l2i,x, . . . , lAx
i,x}. Note that the

line number also signifies the age of the memory block present in that line. Hence, l1i,x

contains the most recently used cache block in the ith set at xth level. Let M be the size

of the main memory(in bytes), and let Mx be the main memory as ‘viewed’ from the

xth cache level, i.e., Mx = {m1, . . . ,mM/linesizex}, where mi are memory blocks of size
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linesizex.

Definition Concrete Set State is a function si,x : fi,x → Mx ∪ {⊥}, where ⊥ signifies

the empty memory block. Let Si,x be the set of all such functions.

Definition Concrete Cache State is a function cx : Fx → ⋃setsx
i=1 Si,x, such that cx(fi,x) ∈

Si,x, ∀1 ≤ i ≤ setsx. Let Cx be the set of all such functions.

Definition Concrete Cache Hierarchy State is a function h : F → ⋃n
x=1 Cx, such that

h(Fx) ∈ Cx. Let H be the set of all concrete cache Hierarchy States.

Each element of the concrete lattice is a subset of H. The concrete transfer function for

this lattice takes a concrete cache hierarchy state and a memory reference, and outputs

another concrete cache hierarchy state. This transfer function depends on the inclusion

policy of the cache hierarchy and the nature of writes to the cache(i.e. writeback or

writethrough), and basically mimics the actual cache update. For the abstract lattice,

we have the following definitions:

Definition Abstract Set State is a function ŝi,x : fi,x → 2Mx∪{⊥}. In an abstract set

state, we allow a cache line to contain multiple cache blocks. Again, let Ŝx be the set of

all such functions.

Definition Abstract Cache State is a function ĉx : Fx → ⋃setsx
i=1 Ŝi,x, such that ĉx(fi,x) ∈

Ŝi,x, ∀1 ≤ i ≤ setsx. Let Ĉx be the set of all such functions.

Definition Abstract Cache Hierarchy State is a function ĥ : F → ⋃n
x=1 Ĉx, such that

ĥ(Fx) ∈ Ĉx. Let Ĥ be the set of all concrete cache Hierarchy States.

The following three analyses use the above mentioned definitions.

The Must Analysis produces an abstract hierarchy state at each program point such that

every concrete hierarchy state possible at the program point contains all the memory

blocks present in the abstract state, and the age of a memory block in the abstract state

is an upper bound on the age of the block in all concrete states. Intuitively, the Must
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analysis provides those cache blocks that are guaranteed to be present in the cache, and

thus accesses to such blocks can be classified as always hit.

The May Analysis produces an abstract hierarchy state at each program point such

that no concrete hierarchy state possible at the program point can contain a memory

block not present in the abstract state. Hence, the abstract hierarchy state is in some

sense, a superset of all concrete hierarchy states possible at the program point under all

executions. Also, the age of a memory block in the abstract state is a lower bound on

the age of the memory block in all concrete states. Intuitively, the May analysis provides

those cache blocks that may enter the cache along some execution path. Hence, if a

cache block is not present in the abstract state produced by May analysis, access to such

a block can be safely classified as always miss.

Persistence Analysis produces an abstract state similar to the May analysis, but with

the property that the age of a memory block in the abstract state is an upper bound on

the age of the memory block in all concrete states. To indicate that a memory block in

cache level x can be evicted, in which case its age would be Ax +1, a special eviction line

is added to each set, which contains those memory blocks which may have been evicted.

Persistence Analysis is used to identify those cache blocks that are persistent. A cache

block is persistent, if once it is brought into the cache, it is not evicted. Cache blocks

in the persistence cache which are not in the eviction line are persistent. Persistence

Analysis is used to classify references in loops as first miss(i.e. miss on first iteration,

hits on all other iterations).



Chapter 4

Improved Must Analysis

Must analysis is the most important of the three analyses from the perspective of obtain-

ing safe estimates, because an access classified as hit from the Must cache is guaranteed to

be hit in the actual cache for all executions. This imposes a stringent safety requirement

on the analysis itself. To satisfy this safety requirement, the precision of the analysis is

severely compromised. This precision issue is further exacerbated in Data cache Must

Analysis, because of the imprecise results of Address Analysis.

For the following discussion, assume that we are dealing with a single level cache.

Hence, fi denotes that ith set in the cache, while lai denotes the cache line in this set

with age a. If the cache block accessed by an instruction is precisely known(i.e single-

reference access), then the transfer function of Must Analysis is similar to the actual

LRU update of a normal cache. Given the accessed cache block, the set fi containing

it can be determined. The abstract set state ŝi(fi) of the Must cache is modified by

bringing the accessed cache block to the first position(i.e. at l1i ). If the accessed block

was already present in the set state at position h, then the younger cache blocks are

shifted by one position. If the accessed block was not present, then all the cache blocks

in the set state are shifted, evicting the oldest referenced cache blocks(i.e. those in lAi ).

On the other hand, for multi-reference accesses, the transfer function is not as precise

as the actual LRU update. For such an access, the address analysis gives a set of cache

blocks X = {m1, . . . ,ml}, which can be accessed by the instruction. Since the exact

12
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cache block which is accessed is not known, the transfer function does not bring any

of the accessed cache blocks to the must cache. At the same time, any of the cache

blocks in X can be accessed, and hence they can all contribute to the aging of the cache

blocks already present in the Must cache. To simulate this aging effect, for cache blocks

in the Must cache at position h, we count the number of accessed cache blocks which

have an age greater than h, or are not present at all in the must cache. Let Xi =

{m1, . . . , mli} be the cache blocks in X which map to the set fi. We define the function

shiftctr(Xi, h) = |{m ∈ Xi|(∃a, h < a ≤ A, m ∈ ŝi(l
a
i ))∨ (∀a, 1 ≤ a ≤ A, m 6∈ ŝi(l

a
i ))}|.

shiftctr(Xi, h) gives the worst case increase in the age of cache blocks at position h due

to the access X. Since the actual access can only increase the age of a cache block by 1,

if shiftctr(Xi, h) ≥ 1, we increase the age of cache blocks at position h by 1.

Figure 4.1: Imprecision of Original Must Analysis

While the above transfer function is safe, it suffers from lack of precision. Consider

the loop represented by the CFG in the Figure 4.1. a, b, c are cache blocks which map

to the same set, and the cache has an associativity of 4. Before entering the loop for

the first time, the cache block c is already present in the Must cache with age 1 at

program point A. Since the access inside the loop is multi-reference, cache blocks a and

b will not be brought into the must cache after the access. Also, at program point B,

shiftctr({a, b}, 1) = 2, since both a and b are not present in the cache. Hence the cache

block c will be shifted to position 2 in the must cache at program point C. Join in the

Must Analysis is intersection of cache blocks in the corresponding set states, while taking
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the maximum age. Hence, in the next fixed point iteration, the join of the must caches

at program points A and C will result in in the must cache with the cache block c in

position 2 at program point B. Again shiftctr({a, b}, 3) = 2, hence the cache block c

will now have an age of 3 at program point c. Eventually, it will be evicted from the

Must cache, resulting in an empty set state in the Must cache at program point C, and

subsequently at program points B and D.

Since there are only three cache blocks involved in the loop, the cache block c will

never be evicted during any actual execution. Hence, while Must Analysis give a safe

estimate, it can be made more precise by including the cache block c in the Must cache

at program point D. The key observation here is that at C, there can be maximum of two

cache blocks which are younger than cache block c. This information can be captured

using May Analysis.

Consider a cache block m at position h in the Must cache at some program point P .

Now, consider the May cache at program point P . The May cache will also contain the

cache block m, and it will be present with an age less than or equal to h. Now, consider

all the cache blocks at positions less than or equal to h in the May cache at P . It can

be argued that these cache blocks comprise the entire set of cache blocks which can be

younger than the cache block m under any actual execution. No cache block that may

be present in the cache at P will be missed by the May Analysis, and cache blocks with

age greater than h in the May cache will never have an age less than h at program point

P , since May cache also maintains the lower bound on ages. Hence, if a cache block

was younger than m at P along some execution path, it will be captured by the May

Analysis. Now if the instruction following program point P accesses a set of memory

blocks X, then the memory blocks in X along with all the memory blocks at positions

less than or equal to h in the May cache at P will be the maximum number of cache

blocks that can be younger than m at the program point Q.

Let MaxY oung(Xi, h) = |Xi ∪ ⊔h
a=1(ŝ

May
i (lai ) − Xi)|. Note that ŝMay

i indicates the

ith cache set of the May cache. MaxY oung(Xi, h) gives the maximum number of mem-

ory blocks which will be younger than a memory block present at position h in the
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Must cache, after the access Xi. We now take the minimum of h + shiftctr(Xi, h)

and MaxY oung(Xi, h), and if it is greater than h, we increase the age of cache blocks

at position h in the Must cache by 1. In the example, after the cache block c moves

to position 3 in the Must cache at program point B, for the next access, Min(3 +

shiftctr({a, b}, 3),MaxY oung({a, b}, 3)) = Min(5, 3) = 3. Hence the cache block c will

remain at position 3 in the Must cache after the access.

Let NewPos(Xi, h) be h + 1 if Min(h + shiftctr(Xi, h),MaxY oung(Xi, h)) > h, or

h otherwise. Formally, the transfer function of the improved Must Analysis can be given

as follows:

Û Ĉ
Must(ĉ, X) = ĉ′

where ∀i, 1 ≤ i ≤ sets, ĉ′(fi) = Û Ŝi
Must(ĉ(fi), Xi)

If X = {m} is singleton, then

ÛSi
Must(ŝi, Xi) =





ŝi,

if Xi is empty

l1i 7→ {m}
lai 7→ ŝi(l

a−1
i ), 2 ≤ a ≤ h− 1

lhi 7→ (ŝi(l
h
i )−m) ∪ ˆsi(l

h−1
i )

lbi 7→ ŝi(l
b
i ), h + 1 ≤ b ≤ A

if∃h, 1 ≤ h ≤ A, such that m ∈ ŝi(l
h
i )

l1i 7→ {m}
lai 7→ ŝi(l

a−1
i ), 2 ≤ a ≤ A

otherwise

If X is non-singleton, then

ÛSi
Must(ŝi, Xi) =





ŝi,

if Xi is empty

lai 7→
⊔

b
b+NewPos(Xi,b)=a

ŝi(l
b
i ), 1 ≤ a ≤ A

otherwise
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Note that the notation l 7→ A indicates that the cache line l will now be mapped to

set A in the new abstract set state. The important difference between the original Must

analysis and the Improved Must analysis is that the original analysis uses only the shiftctr

function, while we also use the MaxYoung function. However, note that the NewPos

function will always be less than or equal to the shiftctr function. This means that if

a cache block is not evicted from the Must cache by the original Must analysis(which

would happen if shiftctr < A + 1), it will not be evicted by the improved Must analysis

as well. Hence, the improved must analysis is at least as precise as the original Must

analysis. The upper bound on ages computed by the improved Must analysis will always

be less than or equal to those computed by the original Must Analysis.



Chapter 5

May Analysis

The Abstract lattice for May analysis is simply the set of all abstract cache hierarchy

states, i.e. Ĥ. The join is a level-by-level, set-by-set union of all the corresponding

abstract set states, while taking the minimum age. Below, we present a slight refor-

mulation of the original transfer function for May analysis. While it achieves the same

effect as the original transfer function, it can be more efficiently computed, especially

for multi-reference accesses. For a multi-reference accesses consisting of n accessed cache

blocks, the original transfer function would perform n single-reference access updates,

and then perform a join of the n updated cache hierarchies. Our transfer function inher-

ently handles multi-reference accesses, and hence would require only one update and no

joins.

For a single reference access to level x, the transfer function Û Ĉx
May takes the input

cache state and the accessed cache block and returns a new cache state. It simply applies

the transfer function for abstract sets, Û Ŝx
May to the set which contains the accessed cache

block, and keeps the rest of the sets unchanged. Below, the notation l 7→ m indicates

17
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that after the update, the function will now map l to m.

Û Ŝx
May(ŝi,x,m) =





l1i,x 7→ m,

lai,x 7→ ŝi,x(l
a−1
i,x ), 2 ≤ a ≤ h

lh+1
i,x 7→ ŝi,x(l

h+1
i,x ) ∪ (ŝi,x(l

h
i,x)−m),

lbi,x 7→ ŝi,x(l
b
i,x), h + 2 ≤ b ≤ Ax;

if∃h, 1 ≤ h ≤ Ax,m ∈ ŝi,x(l
h
i,x),

l1i,x 7→ m,

lai,x 7→ ŝi,x(l
a−1
i,x ), 2 ≤ a ≤ Ax;

otherwise

The transfer function for the abstract set brings accessed cache block to the first position

in set. If the block m was already present in the set, then the ages of all cache blocks

who were accessed recently relative to m would be increased by 1. This also includes

those cache blocks who may have an age same as that of m.

This transfer function takes as input only one accessed cache block, but as stated

earlier, address analysis for data caches is imprecise, and hence we may have to update

the abstract cache with a set of accessed cache blocks, with the property that the actual

access will to any element of this set. All the accessed cache blocks may not map to the

same cache set. In such a scenario, since we do not know which cache set will actually

be accessed, we cannot increase the age of any cache block in any of the cache sets, as

May analysis needs to maintain the lower bound of ages. As a result, we simply bring

all the accessed cache blocks to the first position in their respective cache sets.

In the scenario where all the accessed cache blocks map to the same set, we can con-

sider the cache block among those accessed which has the minimum age, and safely in-

crease the ages of all the cache blocks in this cache set having age less than the ‘youngest’

accessed cache block. Formally the transfer function is:

Û Ŝx
May(ŝi,x, {m1, . . . , mp})
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=





l1i,x 7→ {m1, . . . , mp},
lai,x 7→ ŝi,x(l

a−1
i,x ), 2 ≤ a ≤ h

lh+1
i,x 7→ (ŝi,x(l

h+1
i,x ) ∪ ŝi,x(l

h
i,x))− {m1, . . . , mp},

lbi,x 7→ ŝi,x(l
b
i,x)− {m1, . . . ,mp}, h + 2 ≤ b ≤ Ax;

if∃g, 1 ≤ g ≤ Ax,∃j, 1 ≤ j ≤ p,

mj ∈ ŝi,x(l
g
i,x) and h is the minimum of all such g

l1i,x 7→ {m1, . . . , mp},
lai,x 7→ ŝi,x(l

a−1
i,x )− {m1, . . . , mp}, 2 ≤ a ≤ Ax;

otherwise



Chapter 6

Improved Persistence Analysis

Persistence Analysis is used to determine the upper bound on the ages of all cache blocks

that may enter the cache. Similar to May analysis, if there is any execution path along

which a particular cache block enters the actual cache, then the Persistence cache must

include this cache block. If the cache block has different ages along different paths, then

Persistence analysis must determine the maximum age. To indicate that the cache block

may also have been evicted, a special eviction line l>i is added to each set state.

Apart from this special eviction line, the abstract lattice for the original Persistence

analysis is same as that of May analysis. The join in this lattice also does a cache set-

by-set union, except that it takes the maximum age of a cache block, if it is present in

both cache sets.

The transfer function for persistence analysis, as given in [12] is similar to that of

Must analysis. For single-reference accesses, it brings the accessed cache block to the

first position in the set state. If the cache block was already present in the cache, then

the ages of all cache blocks younger than the accessed cache block will be increased. The

rest of the cache blocks retain the same age, including the cache blocks in the special

eviction line. Finally, if the cache block was not present in the cache, the age of all cache

blocks(except those in the eviction line) are increased. The newly evicted cache blocks

are simply added to the eviction line, which retains the cache blocks present in it before

the update.

20
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Since the join used in Persistence Analysis is cache set union, but the transfer function

is similar to Must Analysis, the objective of Persistence Analysis–to maintain an upper

bound on ages of all cache blocks–is not achieved. Consider a cache block m present

in the persistence cache at a Program point P , with age h ≤ A. Since the join used

by Persistence Analysis is set union, m may not be present at program point P in the

actual cache along some execution path. Then along such a path, an access to m at P

will contribute to an increase in the age of all cache blocks present in the actual cache.

However, since the persistence cache contains m, an access will only increase the age of

those cache blocks which are younger than m. Hence the upper bound on ages computed

by the Persistence Analysis for those cache blocks which have higher ages than m will

not be correct.

This suggests that while doing cache update, we must only consider those cache

blocks which are guaranteed to be present in the cache, and use these cache blocks to

decide the new ages of cache blocks in the persistence cache. The Must analysis precisely

computes the set of cache blocks that must be in the cache at a program point, and it

runs independent of the persistence analysis. However, Must Analysis suffers from lack

of precision since the join used is set intersection. Hence, just relying on Must Analysis

will give safe but imprecise results. The upper bound on the age of cache block m at a

program point must itself be upper bounded by the maximum number of younger cache

blocks than m that enter the cache along all execution paths. May Analysis can be used

to determine this upper bound, similar to the improved Must Analysis.

Using the contents of the abstract cache maintained by the Must analysis and the

May analysis, we propose the following transfer function for Persistence Analysis:

We will present the transfer function for a general multiple-reference access to level

x. The transfer function for the abstract cache state, U Ĉx
Per, applies the transfer function

for abstract set state, U Ŝx
Per to all sets, which takes as input the abstract set state and the

accessed cache blocks mapping to the set. Let ĉMust
x and ĉMay

x be Must and May caches

respectively at the program point, and let ŝMust
i,x = ĉMust

x (fi,x), ŝ
May
i,x = ĉMay

x (fi,x) 1 ≤ i ≤
setsx. Let Xi = {m1, . . . , mli} be the cache blocks in the incoming access, mapped to
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set i.

We use the function shiftctr(Xi, h) = |{m ∈ Xi|(∃a, h < a ≤ Ax, m ∈ ŝMust
i,x (lai,x))∨(6

∃a, 1 ≤ a ≤ Ax, m ∈ ŝMust
i,x (lai,x))}|, 1 ≤ h ≤ Ax. Note that shiftctr function uses the

contents of the Must cache to determine the increase in age of cache blocks in the

Persistence cache. For a cache block with age h in the Persistence cache, all the accessed

cache blocks which are either not present in the Must cache, or which are older(i.e have

age greater than h) can contribute to its aging. Shiftctr function exactly counts such

cache blocks, and thus gives the worst case increase in the ages of blocks in position h

due to the access Xi.

Let MaxY oung(Xi, h) = |Xi ∪ ⊔h
a=1 ŝMay

i,x (lai,x) − Xi|. MaxY oung(Xi, h) gives the

maximum number of memory blocks which will be younger than a memory block present

at position h in the Persistence cache, after the access Xi.

The transfer function must now shift the cache blocks in position h to h + 1 if

Min(h + shiftctr(Xi, h),MaxY oung(Xi, h)) is greater than h. Otherwise the cache

blocks will remain at position h (the new position is designated as NewPos(Xi, h)). If

the access is single-reference(i.e. Xi is singleton), then the accessed cache block will be

brought in the first position in the persistence cache and the rest of cache blocks will

follow the above rule. However, if the incoming access is multi-reference, then all the

accessed blocks cannot be brought into the first position. Let X ′
i be the set of memory

blocks in Xi where are not present in the set ŝi,x and let z = |X ′
i|. Then, the cache blocks

in X ′
i will be brought into position z in the persistence cache. Among the memory blocks

that are referenced in Xi and also present in the persistence cache, we cannot decrease

their relative ages and their new ages will be determined using the NewPos rule.

U Ŝx
Per(ŝi,x, Xi)
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=









lai,x 7→ ⊥, 1 ≤ a < z

lzi,x 7→ X ′
i

lai,x 7→
⊔

b,
b≤a ∧ NewPosi(b)=a

ŝi,x(l
b
i,x), z < a ≤ Ax

if z ≤ Ax



lai,x 7→ ⊥, 1 ≤ a ≤ Ax

l⊥i,x 7→ X ′
i ∪

⊔Ax
a=1 ŝi,x(l

a
i,x)

otherwise

The problem with the original Persistence Analysis as well as approaches to overcome it

have been proposed in [4] and [7]. Cullmann’s approach[4] uses May analysis to count

the total number of cache blocks that can be present in the cache at a program point,

and then depending upon whether this number is greater than the cache associativity, it

evicts the cache blocks with age A in the Persistence cache. This approach is imprecise

because it always increases the age of all cache blocks in the Persistence cache irrespective

of whether the accessed blocks are already present or not.

Figure 6.1: Imprecision of Cullmann’s Analysis

For the program represented by the CFG shown in Figure 6.1, assume that cache

blocks a, b, c, d, e all map to the same cache set, and the cache associativity is 4. At the

program point B, the block a will be present in the persistence cache, and will also be

the youngest. Hence, the next access to the same block should not age any other cache

blocks in the Persistence cache. However, Cullmann’s analysis continues to increase the

age of all cache blocks in the Persistence cache at any access. Hence, at program point

B, block b will have an age of 2, at C, it will have an age of 3, and finally at point D,
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block b will have an age of 4. After the accesses to c, d and e, the total number of cache

blocks in the May cache would become 5, resulting in eviction of the cache block b at

the next access to block c by Cullmann’s analysis. Hence, cache block b is classified as

non-persistent by Cullmann’s Analysis. However, in the actual cache, the cache block

b will never be evicted during any execution. This is because at the program point D,

block b will have a maximum age of 2, and the next two accesses(the first access being

either c, d, or e and the second access c) will at most increase its age by 2, leaving b with

a maximum age of 4 at program point H. Since the Must caches at program points B, C

and D will contain the cache block a at the first position, our analysis will not increase

the age of any cache blocks in the persistence cache at those points. Hence, our analysis

will be able to capture the correct upper bound on the cache block b at all program

points, and declare b as persistent. Along with its imprecision, Cullmann’s Analysis also

seems incapable of handling multi-reference accesses.

The approach proposed in [7] augments the original persistence analysis by also calcu-

lating the younger set(i.e. the set of younger cache blocks) for every cache block present

in the Persistence cache. While similar to our approach in spirit, there are two important

advantages of our approach. First, we use the May Analysis to calculate the younger

set of each cache block. This is an elegant and much more efficient way of calculating

the younger set. Their approach separately maintains a younger set of each cache block

that may enter the cache, along with the persistence cache, which results in a lot of

duplication. As an example, when a cache block is accessed, it is added to the younger

set of every cache block that is present in the Persistence cache, whereas in our approach,

it would simple appear once in the May cache.

More importantly, their approach only considers the cardinality of the younger set

while updating the age of cache blocks, while ignoring the contents of the Must cache.

This affects the precision of Persistence Analysis, and cache blocks that are actually

persistent can be missed by their analysis.

Consider Figure 6.2, depicting part of the CFG of a program. Let the associativity

of the cache be 2, and assume that cache blocks a, b, c map to the same cache set. After
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Figure 6.2: Imprecision of [7]’s Analysis

the join, at program point F , the younger set of cache block b would contain both a

and c, and hence an age update solely based on younger set would conclude that b could

have been evicted, when program point F is reached(The age of a cache block is the

cardinality of the younger set + 1). However, in our analysis, at program points D and

E, the cache block b would be at position 2. This is because at points B and C, cache

block b would be at position 1 in the persistence cache and the must cache(as it has

just been accessed), while the cache blocks a and c would not be present in the Must

cache. Hence shiftctr({a}, 1) = shiftctr({c}, 1) = 1, which would mean that the cache

block at position 1 in the Persistence cache (which would be the block b), would be

moved to position 2. Join in our Persistence Analysis is just set union, while taking the

maximum of ages. Since block b is at age 2 in both the persistence caches at D and E, it

would remain at position 2 in the persistence cache at F . This analysis is more precise,

because the cache block b would never be evicted during any actual execution, and hence

is persistent. Note that MaxY oung({a}, 1) = MaxY oung({c}, 1) = 2 as well, since only

the cache block b will be at position 1 in the May cache at program points B and C.



Chapter 7

Multi-level Cache Analysis

7.1 Motivation

The basic strategy for Multi-level cache analysis is to identify the cache blocks that

are guaranteed to be present in the cache, for each cache level. Once we have this

information, we can determine the worst case execution time of each memory-accessing

instruction, which will just be the access latency of the first cache level Lx, which satisfies

the condition that all memory blocks accessed by the instruction are present in levels L1

through Lx. If no such level exists, then it will be the main memory access latency.

Must analysis at each cache level should be sufficient to accomplish this goal. How-

ever, as stated earlier, the contents of level Lx determines which blocks will be referenced

at level Lx+1(except for the first level). The access pattern across levels also depends on

the inclusion policy and writeback property. We assume a non-inclusive cache hierarchy

with writeback, write-allocate. We will show that May and Persistence Analysis are re-

quired at all levels for such a cache hierarchy. The following interdependencies between

different analyses can be observed:

Must Analysis at level x + 1 depends on May Analysis at level x, because

of the non-inclusive property of the cache hierarchy. Consider a single-reference

access to the Lx cache. If the Lx Must cache does not contain the accessed block,

then mimicking the actual cache hierarchy update, the transfer function would bring the

26
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accessed cache block to the Must cache and then forward the access to the next level.

The transfer function at the next level will bring the accessed block to Lx+1 Must cache.

Now, if the accessed block is present in the Lx May cache, then during some execution

of the program, the accessed block will be present in the actual cache at level x. In such

a case, the access itself will not go to the level x + 1, during this execution. Due to the

non-inclusion property, the accessed block may or may not be present in the x + 1 level

in the actual cache. This violates the safety of the Must Analysis at the x + 1 level, as

we have already brought the accessed block in the Lx+1 Must Cache.

To safely bring new cache blocks in the Lx+1 Must Cache, we define AccessMust
x+1

to be the set of accesses that are guaranteed to reach level x + 1. AccessMust
x+1 can be

determined from AccessMust
x by removing the accesses which are satisfied by Lx May

Cache. AccessMust
1 is initialized to the access given by Address Analysis, in case of a

single-reference access, or empty in case of a multi-reference access. AccessMust
x is defined

separately for each program point, for all cache levels x. Note that even for a strictly

inclusive cache hierarchy, May Analysis is required to calculate AccessMust
x at each level.

This is because Must Analysis also needs to maintain the upper bound on the age of

cache blocks. Only the accessed cache blocks in AccessMust
x can be brought to the first

position in the Lx Must cache.

Must Analysis at level x + 1 depends on Persistence Analysis at level x,

because of the write-allocate policy. The writeback, write-allocate policy brings the

evicted dirty cache block from cache level x to x+1, and also considers this dirty block as

the most recently accessed block in Lx+1. For the abstract caches, this means that dirty

blocks evicted from Lx also increase the age of the cache blocks in Lx+1. Hence, we need

to determine maximum number of dirty blocks which can be evicted from the xth level,

at each program point, across all executions. evictedMay
x contains all dirty blocks that

may get evicted from level x. Again, this set is calculated separately for each program

point, and for each level x. Also, none of the cache blocks in evictedMay
x can actually be

brought into Lx+1 Must cache, as these cache blocks are not guaranteed to be evicted.

Instead, we only increase the ages of the existing cache blocks in the Lx+1 Must cache
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using the phantom access of evictedMay
x .

The need to determine evictedMay
x has also been mentioned in [2], and they suggested

the following approach for its determination : Given an access, the abstract Must Cache,

and the abstract May cache, consider the set of all dirty blocks in the May cache before

the access(i.e. before applying the transfer function), and remove the dirty blocks from

this set which are also present in the Must cache after the access. The dirty blocks that

are still present in the Must cache after the access are guaranteed to avoid eviction, and

hence, they can be safely removed, while the rest of dirty blocks from the May cache will

constitute a writeback to the new level.

This approach is pessimistic, because May cache maintains the lower bound on age of

all cache blocks, and hence to assume that all dirty blocks in May cache will get evicted

is imprecise. On the other hand, Persistence Cache maintains the upper bound on age of

all cache blocks, and a cache block in the Persistence cache which is not in the eviction

line is guaranteed to avoid eviction. Hence, the set of newly evicted dirty cache blocks

in the Lx Persistence cache after the access is precisely the set evictedMay
x . Finally, note

that if the write policy is write-no-allocate, then Must analysis at level x + 1 does not

require evictedMay
x . This is because dirty blocks in evictedMay

x are not actually brought

into the Lx+1 Must cache, but are only used in increasing the ages of cache blocks already

present. In the write-no-allocate policy, evicted cache blocks do not increase the ages of

cache blocks already present.

The information about which cache blocks are dirty is maintained separately by the

three analyses at each level. Must cache maintains ‘must dirty’ information, which means

if a cache block is dirty in the Must cache, it will be always be dirty in the actual cache

across all executions. May and Persistence analysis maintain ‘may dirty’ information,

which implies a dirty cache block in these caches may or may not be dirty in the actual

cache. For safety, the persistence cache will be used to determine which cache blocks

are dirty from the newly evicted cache blocks, and only the dirty cache blocks will be

present in evictedMay
x .

May Analysis and Persistence Analysis at level x + 1 depends on Must
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Analysis at level x, because of the filtering effect. This is easy to see, because

for carrying out May Analysis at level x + 1, we require AccessMay
x+1 , which consists of

accesses that may reach level x + 1 across all executions. The Lx+1 May cache needs

to contain all cache blocks that may enter the actual cache at level x + 1, for which it

needs AccessMay
x+1 . The accesses that are satisfied by the Lx Must cache will never reach

level x + 1. Hence, AccessMay
x+1 can be determined from AccessMay

x by removing such

accesses. Again, AccessMay
1 is initialized to the set of accesses calculated by the Address

Analysis. Note that since May Analysis also needs to maintain the lower bound on the

ages of cache blocks, AccessMay
x+1 cannot be used to increase ages of cache blocks already

present in the Lx+1 May cache. Instead AccessesMust
x+1 will be used to increase the ages

of such cache blocks. Determining AccessesMust
x+1 requires May analysis at level x, which

shows that May Analysis at level x + 1 also depends on May Analysis at level x. In

any inclusive cache hierarchy, cache levels are always searched from bottom to top, and

the search stops at the first level which satisfies the access. This results in the so-called

filtering effect, whereby accesses not satisfied by the May cache at a level are guaranteed

to reach the subsequent levels, while accesses satisfied by the Must cache at a level are

guaranteed to never reach the subsequent levels.

Persistence Analysis at level x + 1 also requires AccessMay
x+1 , since Persistence Anal-

ysis should also capture all cache blocks that may enter the actual cache during some

execution. Also, since Persistence Analysis also needs to maintain the upper bound on

ages of cache blocks, AccessMay
x+1 itself will be used to increase the ages of cache blocks

already present in the Lx+1 persistence cache.

May Analysis at level x + 1 depends on Persistence Analysis at level x,

because of the writeback policy. The evicted dirty cache blocks from level x are

written to level x + 1 because of the writeback policy. Hence, May Analysis at level

x + 1 requires evictedMay
x , which requires Persistence Analysis at level x. Unlike Must

Analysis, these dirty cache blocks will actually be brought into the Lx+1 May cache.
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7.2 Improved Join for Multi-level Must Analysis

For single level caches, the abstract lattice for Must analysis is the set of all abstract

cache states. The join of two abstract cache states is simply an abstract set-by-set

intersection, while taking the maximum of the ages of a cache block in the two abstract

set states. For multi level caches, the abstract lattice for Must Analysis would be the

set of all abstract cache hierarchy states. An extension of the join of two abstract cache

hierarchies to a level-by-level, set-by-set intersection, however, is imprecise.

We assume that linesize1 ≤ linesize2 ≤ · · · ≤ linesizen. We also assume that

linesizex, 1 ≤ x ≤ n is a multiple of linesize1. Then, we can consider any normal cache

block in level x as a set of rx = linesizex/linesize1 cache blocks from M1 (Remember

that M1 is the main memory as ‘viewed’ from the L1 cache level). Let us call memory

blocks in M1 as basic cache blocks. When we say that cache block mx at level x is a

subset of my at level y, what we mean is that all the basic cache blocks in mx are present

in my.

Figure 7.1: Partial Block Generation

Consider two abstract cache hierarchy states ĥ and ĥ
′
. Let ĥ(Fx) = ĉx and ĥ

′
(Fx) =

ĉ
′
x. Let Range(ĉx) =

⊔setsx
i=1 Range(ĉx(fi,x)), and Range(ŝi,x) =

⊔Ax
a=1 ŝi,x(l

a
i,x). Consider

a cache block mx ∈ Range(ĉx), mx /∈ Range(ĉ
′
x), and suppose mx ⊂ my, and my ∈

Range(ĉ
′
y), my /∈ Range(ĉy), with x < y. This situation is depicted in Figure 7.1a(with

mx = a and my = b). Separate joins at levels x and y would result in cache blocks mx
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and my to be absent from both cache levels Fx and Fy. However, any access to the cache

block mx would not go beyond the Fy level. The Must analysis can be made more precise

by including the ‘partial’ block mpr
x at the yth level. The whole cache block my cannot

be included at the yth level, because the linesizes at the two levels may be different, and

in general, nothing can be said about the accesses to my which are not in mx.

Note that partial blocks can be useful even when the actual blocks themselves survive

the join process. In the above example, if my ∈ Range(ĉy), then my would be present

in the join(as depicted in Figure 7.1b). However, join in Must analysis also takes the

maximum of the two ages. Hence, if the age of my is lower in ĉ
′
y, then the partial block

mpr
x would have a lower age than the actual block(and its superset) my in the join.

This would mean the partial block would survive longer than the actual block for the

subsequent accesses, making the Must analysis more precise.

The partial block mpr
x will be present in the cache at level y, but it is linked to the

block mx at level x, and to the block my at level y. If either of these blocks get evicted

from the cache during subsequent accesses, then the partial block mpr
x should also get

evicted. To achieve this, we place the partial block at the minimum eviction distance of

the two actual blocks, with an age of Ay −Min(Ax − hx, Ay − hy). Ax and Ay are the

associativities, while hx and hy are the ages of the cache block mx and my respectively.

Figure 7.2: Indirect Age update through Pseudo block

If a subsequent access reaches level x, but does not reach level y, even then, it may

result in an increase in the age of the actual block mx at level x, which should be

propagated to the partial block at level y(to maintain the condition that if the actual

block gets evicted, the partial block should also get evicted). However, the actual block

mx may not have survived the earlier join process in the abstract cache. To solve this

issue, whenever a partial block is added, we also add a corresponding ‘pseudo’ block at

the lower level. In the above example, the pseudo block mps
x would be added at level x,



Chapter 7. Multi-level Cache Analysis 32

with the same age as the actual block mx. The pseudo blocks cannot be used to satisfy

any accesses, but they experience age increase just like any normal cache block. These

age increases are propagated to the corresponding partial blocks to which the pseudo

blocks are linked. For example, in the abstract hierarchy state shown in Figure 7.2, the

access to cache block b will be satisfied at L1, and hence will not reach L2(thus not

updating the age of block c in L2). However, the increase in the age of pseudo block aPs

will be forwarded to the partial block aPr, resulting in an indirect age update.

If the block mx at level x is dirty, then it is not necessary to keep track of its eviction

from level x in the process of maintaining the age of the partial block. This is because

on eviction, it would be written to the next level, and hence keeping the partial block at

level y would still be safe. Hence, in such a scenario, the pseudo block mps
x would not be

included in the join at level x, and the partial block mpr
x will be included in the join at

level y with the same age as the actual block my. Since the pseudo block is not present

at the lower level, only accesses which reach level y will contribute to the aging of the

partial block. This scenario is shown in Figure 7.1c, where the dirty block a results in

the creation of the lone partial block aPr with the same age as the actual block b in L2.

In general, the following strategy for joins is proposed: For join at the level y, we

first do a normal set-by-set intersection of ĉy and ĉ
′
y. After that, for each such cache

block my in ĉy, if there exists mx ∈ Range(ĉ
′
x), 1 ≤ x < y with mx ⊂ my, we include

the partial block mpr
x in the join at level y, with the minimum eviction distance of both

levels. We also include the pseudo block mps
x at level x with the same age as the actual

block mx. If the block mx is dirty, then the pseudo block will not be included. We

repeat the procedure for all cache blocks in ĉ
′
y. For partial(and pseudo) blocks which

are already present, we do a level-by-level, set-by-set intersection, just like normal cache

blocks. Finally, if the partial(or pseudo) block is present in ĉy, while the corresponding

actual block is present in ĉ
′
y, then the partial(or pseudo) block will be present in the join

as well, with the maximum of the two ages.

To recap:

• Partial blocks are treated just like normal cache blocks, except that they may not
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have the same size as a normal cache block on the same level. They may or may not

have a corresponding pseudo block at a lower level. If they have a pseudo block,

then any increase in age to the pseudo block will be propagated to the partial block

as well. A partial cache block in level x will contain less than(or equal to) rx basic

cache blocks. To determine whether an access can be satisfied by the partial cache

block, only the basic cache blocks present in it are considered.

• Pseudo blocks are different from normal cache blocks in the fact that they cannot

be used to satisfy any accesses. However, just like normal cache blocks, they will

experience age increases and eventually get evicted. There exists a partial block

for every pseudo block, but there may exist partial blocks who do not have any

corresponding pseudo blocks.

Allowing such joins across levels will change the meaning of Must analysis in the multi-

level cache context. While for single level caches, the must analysis gives the upper bound

on the age of cache blocks, for multi-level caches, the new must analysis gives an upper

bound for normal cache blocks, and for partial cache blocks, it gives the upper cache level

bound, implying that in the concrete cache hierarchy states corresponding to the abstract

state, these blocks will either be at the same level or at a lower level(determined by the

size of the partial block), with an eviction distance less than or equal to the eviction

distance of the partial block.

7.3 Abstract Lattice for Multi level cache analysis

We consider the most difficult case of non-inclusive, writeback, write-allocate cache hi-

erarchy. As noted earlier, for such a cache hierarchy, we need all the three analyses for

safety and precision. Our abstract lattice is hence the cross-product lattice Ĥ × Ĥ × Ĥ.

We carry out our improved Must analysis, May Analysis, and Improved Persistence anal-

ysis on three different abstract cache hierarchy states. The algorithm (shown on the next

page) describes how the Must, May and Persistence caches are updated across all levels

due to a single access X.
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Input: ĥMust
in , ĥMay

in , ĥPer
in , X

Output: ĥMust
out , ĥMay

out , ĥPer
out

AccessMay
1 = X;

if |X| == 1 then

AccessMust
1 = X;

else

AccessMust
1 = {};

end

x = 1;

while x ≤ n and AccessMay
x 6= φ do

ĥPer
out (Fx) = Û Ĉx

Per(ĥPer
in (Fx), AccessMay

x );

ĥMust
out (Fx) = Û Ĉx

Must(ĥ
Must
in (Fx), AccessMay

x );

ĥMay
out (Fx) = Û Ĉx

May(ĥMay
in (Fx), AccessMust

x );

/* Order of update is important, as Persistence Analysis uses Must and May cache before update

*/

Bring all cache blocks accessed in AccessMay
x to first position in their respective set states in ĥMay

out (Fx);

AccessMust
x+1 = AccessMust

x − {m ∈ AccessMust
x |Access m is satisfied by ĥMay

in (Fx)};
AccessMay

x+1 = AccessMay
x - {m ∈ AccessMay

x |Access m is satisfied by ĥMust
in (Fx)};

if AccessMust
x+1 == φ then

/* Add empty access if no access is guaranteed */

AccessMay
x+1 = AccessMay

x+1 ∪ {⊥};
end

if x 6= n then

evictedMay
x = Set of newly evicted dirty cache blocks in ĥPer

out (Fx);

ĥPer
in (Fx+1) = Û

Ĉx+1
Per (ĥPer

in (Fx+1), evictedMay
x );

ĥMust
in (Fx+1) = Û

Ĉx+1
Must (ĥMust

in (Fx+1), evictedMay
x );

Bring all cache blocks in evictedMay
x to first position in their respective set states in ĥMay

in (Fx+1);

end

x = x + 1;

end

if x < n then

while x ≤ n do

ĥMust
out (Fx) = ĥMust

in (Fx);

ĥMay
out (Fx) = ĥMay

in (Fx);

ĥPer
out (Fx) = ĥPer

in (Fx);

x = x + 1

end

end

Algorithm 1: Multilevel Cache Analysis Update
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For simplicity, we have not shown the details of the update to pseudo and partial

blocks in the algorithm. In the algorithm, Û Ĉx
Y is the transfer function for the cache

level x for Y ∈ {Must, May, Persistence} Analysis. While Must and Persistence caches

can be directly updated using AccessMay, the accessed cache blocks in AccessMay are

simply brought to the first position in the May cache, while the update on the ages of

the existing cache blocks in May cache takes place using AccessMust. Another thing to

note is that if AccessMust
x is empty, then this implies that access is not guaranteed at

level x. The reason behind adding the empty access to AccessMay
x is to make sure this

set will not be singleton. This ensures that the Must Analysis transfer function will not

bring any new cache blocks to the Must cache at level x.



Chapter 8

Experimental Evaluation

The evaluation was carried out in two steps. In the first step, we only implemented

the improved Must analysis for a single-level cache, to determine its improvement on

precision as compared to the original Must analysis. In the second step, we implemented

all the three analyses for a multi-level cache hierarchy, first without the partial block

optimization, and then with it.

As part of the first step, we implemented the improved Must Analysis on top of the

prototype for WCET estimation used by [10]. This prototype is built for estimating

WCET of programs for the ARM7TDMI processor, which is a 32-bit RISC processor

used in a number of real-time devices such as audio equipments, printers, etc. We did

not make any changes in the Address Analysis and the ILP parts of the prototype. The

prototype uses the original Must Analysis to estimate the cache contents and classify

each memory access as always hit/indeterminate. We replaced this part with the im-

proved Must analysis. The configuration of the cache memory used is : 16k, 4-way L1

cache with 32 bytes block size. We also assume the following latencies : Read/Write

hit latency = 1 cycle, Read/Write Miss latency = 100 cycles. Apart from the memory

accessing instructions, every other instruction has a latency of 1 cycle.

36
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1 sum = 0;

2 for (i = 0; i < 40; i++)

3 {

4 rowsum = 0;

5 for (j = 0; j < 40; j++)

6 rowsum = rowsum + array[i][j];

7 sum = sum + rowsum;

8 }

Consider the above program used for summing all the elements of a matrix. The

access to array on line 6 is a multi-reference access, and hence, the original Must anal-

ysis will empty the Must cache, removing the cache block containing the variable sum.

However, because arrays are sequentially stored in the memory, they would actually span

multiple consecutive cache blocks. Hence, a maximum of 1 or 2 cache blocks are actually

accessed per cache set by the array access on line 6. Since the cache associativity is 4,

there are not enough younger cache blocks mapping to the cache set containing the vari-

able sum for it to be evicted. This will be captured by the improved Must analysis, and

all the accesses to sum on line 7 will be classified as hit. The WCET estimated using the

original Must analysis for the above program is 174557 cycles, while the WCET estimated

using improved Must analysis is 170498 cycles. The difference(of 2.3%) corresponds to

the multiple accesses of variable sum on line 7, across loop iterations.

The above program could be used in the scenario where the individual sum of each

row of the matrix is also important. In general, programs with nested loops where the

inner loops access either arrays or pointers, and the outer loops access variables which

are not accessed by the inner loops will benefit from improved Must analysis. Generally

array sizes in real world programs will be large enough to span all the cache sets, but

not so large so as to fill the entire cache. Caches with high associativity and high block

sizes will further ensure that the above conditions are met. We also estimated WCET for
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programs in the WCET benchmarks used in [10]. However, these benchmarks programs

either have only single loops, or nested loops where all variables are accessed in the inner

loops. Hence, the WCET estimates obtained using improved Must analysis were exactly

the same as those obtained using the original Must analysis. Programs which analyze

a collection of data structures such as lists, arrays, etc. and aggregate information

from all the members of the collections will have nested loops. The inner loops would

analyze individual members, while the outer loop would aggregate information. For such

programs (which roughly have the same structure as the program shown above), our

analysis would be able to provide better estimates.

As part of the second step, we implemented our algorithm for Multi-level cache

analysis, along with the improved join for Must analysis, on top of the prototype built in

step 1. As in the first step no changes were made in the Address Analysis and the ILP

parts of the prototype. The prototype used single-level Must analysis to predict cache

contents and classify memory accesses as Always hit or Indeterminate. We have upgraded

this part by performing Must, May and Persistence analysis, for a 2-level non-inclusive,

writeback, write-allocate cache.

The cache configuration is the following : 16k, 4-way L1 with block size 32 bytes,

64k 8-way L2 with block size 64 bytes. We ran our prototype on the WCET benchmarks

obtained from [1]. The detailed results for different benchmarks using different variants

of our Multi-level cache analysis are shown in Table 8.1. Following are some of the

important observations of our experiments:

• We have showed that performing Persistence analysis, in addition to Must and May

analysis, is necessary for obtaining a safe WCET estimate for Multi-level caches.

However, it also results in marked improvement in the precision of the WCET

estimate as well. We first implemented our Multi-level cache analysis using only

Must analysis for classification of accesses as Always Hit or Indeterminate, and

then used Persistence analysis to classify accesses inside loops as First Miss(FM).

12 of the 15 benchmarks that we analyzed showed improvement in their WCET

estimates, when Persistence Analysis is used for classification, with the maximum
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improvement as high as 49.72% for the bs benchmark. The average improvement

over all benchmarks is 21.06%.

• Partial blocks are included in higher level caches to improve the precision of join

in Multi-level Must analysis. We next added the partial block optimization to our

prototype. Out of 15, 3 benchmarks (cnt, duff , matmult) showed an improve-

ment of 25.16 %, 14.63 %, and 0.7% respectively, while the rest of the benchmarks

did not show any improvement in their WCET estimates. Considering the sub-

stantial improvement shown by two benchmarks above and none by the rest, it

seems that programs with certain access patterns can benefit hugely from the Im-

proved Join in Multi-level must analysis. However, it is interesting to note that in

13 of the 15 benchmarks, partial blocks were generated during the analysis, but

either the accesses to L2 were not satisfied by these partial blocks, or the actual

blocks themselves were present (alongwith the partial blocks). Also, in a number

of benchmarks, the partial blocks were able to satisfy a subset of the references in

a multi-reference access, which does not result in any change in the final estimated

WCET(as the access will still be classified as miss).

• Improving the Address Analysis is one way of addressing the issue of large access

sets for multi-reference accesses. However, even with the same address analysis, by

partial physical and virtual unrolling of the loops in a program, the size of access

sets can be decreased, along with the number of multi-reference accesses[10]. We

employed the technique of loop unrolling with an unroll fraction of 0.5 and then ran

Multi-level cache analysis without partial block optimization as well as with partial

block optimization on the unrolled program. We found that 3 more benchmarks

benefited from the partial block optimization, with the maximum improvement

in precision being 25.96%(for edn latsynth). Thus, along with the three previous

benchmarks, a total of 6 out of 15(40%) of benchmarks now showed higher precision

in their WCET estimates due to the use of partial blocks, with the average precision

improvement being 14.52% over these 6 benchmarks.
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Table 8.1: Comparison of WCET cycles estimated using different cache analyses

Cache Analysis Cache Analysis with

with FM Classification FM Classification, Partial blocks

Benchmark Cache Analysis w/o FM Classification
Normal 50% unroll Normal 50% unroll

cnt 42537 27147 27147 20316 20316

edn fir 86960 84588 96678 84588 91458

edn fir no red ld 528265 470755 294346 470755 294346

edn iir 48578 31028 19877 31028 19877

jfdcint 21260 18560 4577 18560 4307

edn latsynth 47957 47957 10397 47957 7697

edn mac 48533 27113 17213 27113 17213

bsort100 331466 318891 239175 318891 239175

duff 1020 615 675 525 675

fibcall 139 139 139 139 139

lcdnum 1058 789 789 789 789

qurt 5227 5227 5227 5227 5227

sqrt 985 688 592 688 592

matmult 16960 12829 12829 12739 12739

bs 1629 819 653 819 653



Chapter 9

Proof of Safety of Improved Must

Analysis

The improved Must Analysis differs from the original Must analysis in two places : the

abstract lattice and the transfer function. For the following discussion, assume that we

are dealing with a single-level cache. While the abstract lattice used by the original Must

analysis was the set of all abstract cache states(represented by Ĉ), the lattice for the

improved must analysis is the cross product lattice Ĉ× Ĉ. The improved Must Analysis

produces a pair of abstract cache states at each program point, one corresponding to

the Must cache and other corresponding to the May cache. The May cache will be used

in the transfer function for the Must Analysis as shown in Section 4. We assume the

original May analysis transfer function.

The standard method of proving safety of an abstract interpretation based analysis is

the following : First specify the concretization function(γ) which converts an element of

the abstract lattice to an element of the concrete lattice, specify the abstraction function

(α), which does the opposite thing, and then show that a Galois Connection exists

between the two functions. The second step is to show the correctness of the abstract

transfer function by proving it as an abstraction of the concrete transfer function.

41
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9.1 Proof of Galois connection

Proving the first part in our case is straightforward, as both the concretization and

abstraction functions are simple extensions of the corresponding functions for the original

Must analysis. Given a Must cache and a May cache, γ converts it to a set of concrete

cache states (which is an element of the concrete lattice 2C). All the cache blocks in

the Must cache must be present in all the concrete cache states given by γ, while any

cache block in any concrete cache state must come from the May cache. The age of a

cache block in the concrete cache will be upper bounded by its age in the Must cache

and lower bounded by its age in the May cache. Formally, the concretization function

can be written as:

γĈ(ĉMust, ĉMay) = {c ∈ C|∀i, 1 ≤ i ≤ sets, c(fi) ∈ γŜi(ĉMust(fi), ĉ
May(fi))}

γŜi(ŝMust
i , ŝMay

i ) = {s ∈ Si|(∀a, 1 ≤ a ≤ A, ∀m ∈ ŝMust
i (lai ),∃b, 1 ≤ b ≤ a, s(lbi ) = m)

∧ (∀d, 1 ≤ d ≤ A, s(ldi ) = m,m ∈ M ∪ {⊥} ∧ ∃e, 1 ≤ e ≤ d,m ∈ ŝMay
i (lei ))}

α takes as input a set of concrete cache states and outputs the corresponding Must and

May cache, and is defined as follows : An abstract set state in Must cache will be just

the intersection of the corresponding concrete set states in the concrete caches, with the

age in the abstract set being the maximum of the ages in the concrete set. Similarly,

an abstract set state in the May cache will be union of the corresponding concrete set

states, with the age in the abstract set being the minimum of the ages in the concrete

set. To prove that γ and α form a Galois connection, we need to prove the following two

statements:

γ(α(S)) ⊇ S, ∀S ∈ 2C (9.1)

α(γ((ĉMust, ĉMay))) = (ĉMust, ĉMay), ∀(ĉMust, ĉMay) ∈ Ĉ × Ĉ (9.2)

For (9.1), consider any c ∈ S, and now consider any cache block m present in c. This
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cache block will be present in the May cache generated by α(S), and its age in the May

cache will less than or equal to its age in c. Hence, m respects the lower bound imposed

by the May cache. If it is not present in all cache states of S, it will not be present in

the Must cache and hence there will be no upper bound limit (except the associativity).

If it is present in the Must cache, then its age will be greater than or equal to its age in

c, in which case m respects the upper bound imposed by the Must cache. Hence, γ will

produce a concrete cache state where m has the same age as in c, and this is true for all

cache blocks m in c. Hence c ∈ γ(α)(S). The proof of (9.2) can be similarly sketched.

9.2 Proof of Abstraction

Before proving the correctness of the transfer function, we will prove the following

Lemma:

Lemma 9.2.1 For a cache block with age h in the Must Cache, Number of cache blocks

with age less than or equal to h in the May cache ≥ h. This means that there are

atleast h number of younger cache blocks in the May cache, which in turn implies that

MaxY oung(X, h) ≥ h, for any access X.

Proof Consider the cache block m at position h in the Must cache at some program

point P . Now, consider the last program point Q where the cache block m was the

youngest in the Must cache(i.e. was at position 1). New cache blocks are brought(or

ages are decreased) in the must cache only for single-reference accesses. Hence, the

instruction just before the program point Q must have accessed the cache block m, and

this access must have been single-reference. Single-reference accesses to the May cache

also bring in the accessed block to position 1, and increase the age of all the cache blocks

already present in the May cache by 1. Hence, at Q, cache block m will be the only

cache block at position 1 in the May cache. Hence, the statement of the lemma is true

at this point. Between program points Q and P , the cache block m ended up in position

h in the Must cache, and there are no single-reference accesses to the block m between

Q and P . Now, when the transfer function for Must Analysis increases the age of m
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by a, at least a cache blocks will be added by the transfer function of May analysis to

position 1 in the May cache. Hence cache updates by the transfer function preserve the

statement of the lemma. The join for May analysis is cache set union while taking the

minimum of the ages, while the join for Must analysis is cache set intersection, while

taking the maximum of the ages. Hence, if cache block m is in position h1 in Must

cache ĉMust
1 and position h2 in Must cache ĉMust

2 , then there are atleast h1 younger cache

blocks in the May cache ĉMay
1 and at least h2 younger cache blocks in the May cache

ĉMay
2 . After the join in the May cache all these h1 + h2 will be in positions less than

Max(h1, h2), which is the new position of cache block m in the Must cache after the

join. Since h1 + h2 ≥ Max(h1, h2), the validity of the lemma is preserved.

To prove the correctness of the abstract transfer function, we need to prove the

following :

γ(Û((ĉMust, ĉMay), X)) ⊇ U(γ(ĉMust, ĉMay), X)

The set of concrete cache states, produced by applying γ on the updated abstract cache

state obtained by applying the abstract transfer function(Û) due to an access X, is

the L.H.S of the above equation. In words, the equation means the following : if we

instead apply γ on the un-updated abstract cache state, and then apply the concrete

transfer function(U) individually on each of the concrete cache states, then the set of

updated concrete cache states so produced must be a subset of the L.H.S. We have

already stated that the concrete transfer function is nothing but a simple LRU update.

Since γ(ĉMust, ĉMay) and X are both sets,

U(γ(ĉMust, ĉMay), X) =
⊔

c∈γ(ĉMust,ĉMay)

⊔

m∈X

{U(c,m)}

where U(c, m) updates the concrete cache state c due to the access to the block m.

If X is singleton, then the abstract transfer function for Improved Must Analysis is the

same as the original Must analysis, for which the abstraction proof is already known.

Hence, we only deal with multi-reference accesses. Consider a concrete cache state c,

c ∈ γ(ĉMust, ĉMay), and an access m, m ∈ X. We will show that the updated c after the
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access will be in the concretization set of the updated Must and May cache. To show

this, we have to prove that all cache blocks in the updated Must cache will be present

in the updated c, and all cache blocks in the updated c will be present in the updated

May cache. Also, cache blocks in the updated c should respect the upper bounds and

lower bounds set by the updated Must and May cache, respectively. Since we use the

original May analysis, we know that the abstract transfer function for May analysis is

an abstraction of the concrete transfer function. Hence, there is no need to prove the

results involving the May cache update.

Now, for a multi-reference access X, the Must analysis transfer function does not

bring any new cache blocks into the must cache. All the cache blocks in the must cache

before the update are already present in c, hence, we have to show that if such a cache

block gets evicted from c by the concrete transfer function, then it will also be evicted

from the must cache by the abstract transfer function. This proves that all the cache

blocks in the updated Must cache will also be present in the updated c. If a cache block

me gets evicted from c by the concrete transfer function, it must have the maximum age,

i.e. it must be in lAi . If this cache block is also present in the Must cache, then it must

also have the maximum age in the Must cache, since age in the concrete cache is upper

bounded by age in Must cache. Also, eviction of me from c implies that the accessed

block m is not present in c, which would mean that m is not be present in the must cache

as well. Since m ∈ X, by definition, shiftctr(X, A) ≥ 1, hence A + shiftctr(X,A) > A.

Now, by the lemma proved earlier, we know that there are at least A cache blocks in

the May cache. If the accessed block m is not in May cache, then MaxY oung(X,A) > A,

counting the accessed cache block m along with the minimum A number cache blocks

in the May cache. Hence NewPos(X, h) > A and so me will be evicted from the Must

cache as well. In fact, if any of the accessed blocks in X, and not necessarily m are not

in the May cache, even then MaxY oung(X, A) > A. Let us consider the case where all

the accessed blocks in X are in the May cache. Now the cache block me is in position

A in the concrete cache c before the update. The A − 1 cache blocks younger than me

in c must come from the May cache. Hence, these A cache blocks(including me) are all
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present in the May cache. Also, the accessed cache block m is in the May cache, but

it is not present in the concrete cache c. Hence, there are atleast A + 1 cache blocks in

the May cache. Thus, MaxY oung(X,A) > A, and hence, in all cases me will be evicted

from the Must cache as well by our new transfer function.

The last thing to prove is that the cache blocks in the updated concrete cache c

respect the upper bounds set by the updated Must cache after the access. We know that

before the update, the cache blocks in c do satisfy the upper bounds set by the Must

cache. After the update by the concrete transfer function, the ages of all or some cache

blocks in exactly one cache set of c will be increased by 1. This cache set will be the set

to which the access m is mapped.

First let us take the case where the accessed cache block m is not present in c. Then

the ages of all cache blocks will be increased by 1. In this case, the accessed block m

will not be present in the Must cache as well, hence the shiftctr function for all positions

h, 1 ≤ h ≤ A will be atleast 1. Now, for position h, we know that MaxY oung(X, h) ≥ h.

Let mh be the cache block in position h in the concrete cache c. If the accessed cache

block m is not present in the May cache as well, then adding the accessed block to the

younger set would mean that MaxY oung(X, h) > h. Even If the accessed cache block

m is present in the May cache, consider the cache blocks from position 1 to h in the

concrete cache c. These h cache blocks must be in positions less than or equal to h in the

May cache and hence will contribute to the count of MaxY oung(X, h). And the accessed

block m is not any of these h cache blocks, so it will also contribute to MaxYoung. Hence

MaxY oung(X, h) ≥ h + 1. Hence, NewPos(X, h) ≥ h + 1. Hence the upper bounds set

by the Must cache are still maintained after the update.

Now, let us take the case where the accessed cache block m is present in c at position

h. In this case, the cache blocks at positions less than h will see an increase of age

by 1 due to the concrete transfer function. Now, the accessed block m will either not

be present in the Must cache at all, or if present it will be present at positions greater

than or equal to h. In either case, shiftctr(X, a) ≥ 1,∀a, 1 ≤ a ≤ h − 1. Also, by a

similar argument as used earlier, MaxY oung(X, a) ≥ a + 1, ∀a, 1 ≤ a ≤ h− 1. Hence,
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the transfer function for the improved must analysis will also increase the ages of cache

blocks at positions less than h by atleast 1, thus maintaining the upper bounds.



Chapter 10

Proof of Safety of Multi-level Cache

Analysis

In a general abstract interpretation framework, proving correctness of the abstract lattice

and abstract transfer functions requires two things: First, to specify the concretization

function γ and the abstraction function α, and to prove that they form a Galois Con-

nection. Second, to show that the abstract transfer function is an abstraction of the

concrete transfer function.

10.1 Galois Connection

In the Multi-level Cache Analysis framework, the concrete lattice is the power set of the

set of all concrete cache hierarchy states(H). Our abstract lattice is the cross-product

lattice Ĥ × Ĥ × Ĥ. The concrete cache analysis would give a set of concrete cache

hierarchy states at each program point, where each cache hierarchy state would describe

the possible cache state during some execution of the program. The concretization

function for our Abstract lattice(without the partial block optimization) is given as

follows:

γĤ(ĥMust, ĥMay, ĥPer) = {h ∈ H|∀x, 1 ≤ x ≤ n,

48
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h(Fx) ∈ γĈx(ĥMust(Fx), ĥ
May(Fx), ĥ

Per(Fx))}
γĈx(ĉMust

x , ĉMay
x , ĉPer

x ) = {c ∈ Cx|∀i, 1 ≤ i ≤ setsx,

c(fi,x) ∈ γŜx(ĉMust
x (fi,x), ĉ

May
x (fi,x), ĉ

Per
x (fi,x))}

γŜx(ŝMust
i,x , ŝMay

i,x , ŝPer
i,x ) = {s ∈ Si,x|(∀a, 1 ≤ a ≤ Ax,

∀m ∈ ŝMust
i,x (lai,x),∃b, 1 ≤ b ≤ a, s(lbi,x) = m)

∧ (∀d, 1 ≤ d ≤ Ax, s(l
d
i,x) = m ∧

∃e, 1 ≤ e ≤ d,m ∈ ŝMay
i,x (lei,x) ∧ ∃f, d ≤ f ≤ Ax + 1, m ∈ ŝPer

i,x (lfi,x))}

The concretization function treats each set of each level of the cache hierarchy sepa-

rately. For a set, the concrete set states corresponding to the given abstract set states

in Must cache, May cache and Persistence cache must be in accordance to the following

rules : All the cache blocks present in the abstract set of the must cache should be

present in the concrete set state, with their age upper bounded by the age of the cache

block in the must cache. Any cache block present in the concrete set state must also

be present in both the abstract set states of the May cache and Persistence cache, and

the age of the cache block in the concrete set must be lower bounded by its age in the

May cache, and upper bounded by its age in the Persistence cache. The equations given

above mathematically state the above rules.

The abstraction function takes a set of concrete cache hierarchies(which is a member

of the concrete lattice) and gives three abstract cache hierarchies-ĥMust, ĥMay, ĥPer. The

following natural definition of the abstraction function follows from the Concretization

function and the need to maintain the Galois Connection : Let S be the set of Concrete

Cache hierarchies. For defining ĥMust, for each cache level, and for each set, we take

the intersection of that concrete set across all cache hierarchies in S, with the age of a

cache block being the maximum of its age in all concrete sets. For defining ĥMay, for

each cache level and for each set, we take the union across all cache hierarchies, and the

age of a cache block in ĥMay will be the minimum of its age across all cache hierarchies

in S. For defining ĥPer, we again take the union across all cache hierarchies, but the age
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of a cache block will be the maximum across all cache hierarchies. This, however, will

mean that the eviction line will remain empty in ĥPer for all sets at all cache levels. This

problem arises only because there are no eviction lines in the concrete caches, and can

be easily solved by keeping an eviction way in all sets across all levels in the concrete

caches. This will not affect the cache functions, because the eviction way will not be

considered for cache lookup. Hence, we ignore the eviction way in concrete cache.

For the above definitions of γ and α, it is clear that γĤ(αĤ(S)) ⊇ S, for any set S

of concrete cache hierarchies. Consider h ∈ S, we argue that for every cache block m

in h, there exists a cache hierarchy in γĤ(αĤ(S)), which contains m at the same level,

with the same age . Let m be at level x in h with age a. Then, m will be present in the

May cache generated by αĤ(S), at level x with an age less than or equal to a. Hence,

m is present in the May cache and its age respects the lower bound set by the May

cache. Similarly, m will be present in the Persistence cache with an age greater than or

equal to a. These facts ensure that there will be a concrete cache hierarchy generated

by γĤ(αĤ(S)) with m at level x with age a. Note that while proving this, we have not

assumed anything about the other cache blocks present in the concrete cache state. This,

combined with the fact that the above result is true for all cache blocks in h prove that

the cache hierachy state h will be present in γ(α(S)).

The two sets may not be equal, because other than the elements of S, other cache

hierarchies may also be included by γ, when applied on α(S) since it includes cache blocks

at all ages between the minimum and maximum age. Also, after adding the eviction way

in concrete caches, it is also clear that α(γ(ĥMust, ĥMay, ĥPer)) = (ĥMust, ĥMay, ĥPer).

10.2 Abstraction Proof for Single Ref Access

The next step is to consider the abstract transfer function and prove that it is an ‘ab-

straction’ of the concrete transfer function. The concrete transfer function is nothing but

the actual LRU update of the cache hierarchy. In a write-back, write-allocate, partially
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inclusive cache hierarchy, the concrete transfer function can be represented as follows:

UH(h,m) = h′, where

h′(F1) = fC1(h(F1),m)

h′(F2) = fC2(fC2(h(F2),m
e
1),m)

...

h′(Fr) = fCr(fCr(h(Fr),m
e
r−1),m)

h′(Fr+1) = h(Fr+1)

...

h′(Fn) = h(Fn)

where r is the smallest cache level in which the memory block containing the reference m

is present. In the above equations, h indicates a concrete cache hierarchy state, while fCi

is the concrete transfer function of the ith level, which simply performs an LRU update

on the cache contents of the ith level. me
i is the dirty cache block evicted from the ith

level, which will induce an LRU update in the (i+1)th level in a writeback, write-allocate

cache hierarchy. (Note that if there is no dirty cache block evicted from the ith level,

me
i = ⊥).

We have already stated our abstract transfer function for cache update. We will prove

that

γ(ÛH(ĥMust, ĥMay, ĥPer, X)) ⊇ UH(γ(ĥMust, ĥMay, ĥPer), X)

First, let us assume that X is a single reference access(i.e. X = {m}), and let

S = γ(ĥMust, ĥMay, ĥPer). Let r be the lowest cache level in the Must cache hierarchy

ĥMust which can satisfy this reference(1 ≤ r ≤ n). Hence, according to our abstract

transfer function, AccessMay
r+1 is guaranteed to be empty, because AccessMay

r can atmost

be {m}, and it will be removed since Must cache at level r satisfies this request. Hence,

ÛH will not update the cache levels beyond level r. Also, the memory block satisfying
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the reference will be also be present in the Persistence Cache and the May cache at level

r, hence, evictedMay
r will also be empty. Thus, the abstract update function will behave

as identity for the cache levels in all the three hierarchies beyond level r. Now, for all

concrete cache hierarchies in S, the memory block satisfying m must be present at cache

level r, since it is present in the Must cache at level r. Hence, the concrete update function

will not change the contents of cache level beyond r for all concrete cache hierarchies in

S. This, it is clear that both UH and ÛH behave as identity functions for cache levels

beyond r.

Let r′ be the lowest cache level such that the access can be satisfied by the May

cache at level r′. None of the May caches at level less than r′ contain the memory block

satisfying the access. Consider cache level i ≤ r′. Since the May cache at level i − 1

does not satisfy the access, AccessMust
i = {m}. Hence, the cache block containing the

referenced memory location will be brought into the first position in ĥMust(Fi), ĥ
May(Fi)

and ĥPer(Fi). Note that only the set to which the memory block is mapped will be

affected, while the rest of set will remain the same. Now, in any concrete cache hierarchy

in S, the access is guaranteed to reach level i, since the cache block satisfying the access

will not be present at levels less than i. The concrete transfer function will also bring the

cache block at the first position in all concrete cache hierarchies in S, for all levels i ≤ r′.

Finally, all the cache blocks that were already present in the Must, May and Persistence

caches at levels less than r′ (in the set to which the memory block is mapped) will see an

increase in their ages by 1. The same update is also carried out by the concrete transfer

function for all h ∈ S.

Also, consider the cache block me
i evicted from the cache level i < r′ in a concrete

cache hierarchy h ∈ S after the update. me
i must have had the maximum age in the set for

it to be evicted(i.e. Ai the associativity of level i). Since the age of me
i is upper bounded

by its age in the persistence cache, this means that its age in the persistence cache at

level i must also have been Ai. Hence, after the abstract update, me
i ∈ evictedMay

i , and

hence, it will also be brought in the May and Persistence caches at level i + 1. Note

that evictedMay
i may also contain other cache blocks, and hence many more cache blocks
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may be brought to level i + 1. Thus, we have argued that the updates made by the

concrete and abstract transfer functions at levels i ≤ r′ are such that the concrete cache

hierarchies produced after the concrete update are also produced by the abstract transfer

function.

Now, consider the cache level r′ < i ≤ r. Since the May cache at level r′ satisfied the

access, but none of the Must caches at levels less than r will satisfy the access, hence

AccessMay
i = {⊥,m}. Hence, the abstract transfer function will bring the cache block

satisfying m at the first position only in the May and the Persistence caches, but not in

the Must cache. This is in accordance with the update of the concrete transfer function,

because there will be concrete cache hierarchies in S which contain the memory block

satisfying m at level r′, which means that the access will not go beyond level r’.

The cache block satisfying the reference m will be brought to the first position in May

cache at all levels between r′ and r by the abstract transfer function. Since the empty

access(⊥) is present in AccessMay
i for all levels between r′ and r, the block satisfying m

will not be brought to the first position in the persistence cache if the block was already

present. This is because there exist h in S such that the access does not reach level i, in

which case the contents of cache at level i will not be changed by the concrete transfer

function.

For other cache blocks between these levels, note that the ages of cache blocks in

the May cache will not be updated by the abstract transfer function(since ⊥ is present

in the access), and hence the lower bound of ages will remain the same. On the other

hand, the concrete transfer function will only increase the age of cache blocks in the

concrete cache levels. Hence, the lower bounds decided by the May cache in the updated

abstract cache hierarchy will be obeyed by the conrete cache hierarhies generated by the

concrete transfer function. Since none of the Must caches between levels r and r′ contain

the accessed memory block, the abstract transfer function will increase the age of all

cache blocks in the persistence cache by 1(according to our improved transfer function

for persistence analysis). This is in accordance with the increase of age in cache blocks

in the concrete cache hierarchies by the concrete transfer function.
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Finally, the argument for the evicted cache blocks remains the same as already proved

for cache levels less than r′. Note that the evicted cache blocks will also contribute to an

increase in the ages of the cache blocks in the Must and Persistence cache between levels

r and r′. This increase may be bigger compared to an increase in age due to eviction by

the concrete transfer function, since in the concrete cache hierarchies, atmost one cache

block will be evicted from a lower to a higer level, while the abstract transfer function

considers all newly evicted cache blocks in the persistence cache as evicted. However, this

will only increase the upper bound of the cache blocks and may generate concrete cache

hierarchies in γ(ÛH) which will not be present in UH(γ), still satisfying the superset

relation.

Thus, we have proved that for all cache levels, the abstraction relation is satisfied.

10.3 Abstraction Proof for Multi Ref Access

Let X = {m1,m2, . . . , mk} be the multiple reference access to the abstract cache hier-

archy (ĥMust, ĥMay, ĥPer). Note that there cannot be a multiple reference access to a con-

crete cache hierarchy. The single reference access to any member of S (= γ(ĥMust, ĥMay, ĥPer))

can be any of the k access in the set X. This essentially means that we apply the concrete

transfer function UH(h,m) for all h ∈ S and for all m ∈ X and the set of all the resulting

concrete cache hierarchies is UH(γ(ĥMust, ĥMay, ĥPer), X).

Proving the abstraction result is equivalent to proving the following : For all h ∈ S,

the cache blocks in all levels of UH(h,X) are present in the May cache and Persistence

cache of the corresponding level of ÛH(ĥMust, ĥMay, ĥPer), respecting the upper bound

set by the Persistence cache and lower bound set by the May Cache, and all the cache

blocks at all levels in Must cache are present in the corresponding levels in h. This

implies the UH(h,X) ∈ γ(ÛH(ĥMust, ĥMay, ĥPer, X)).

Consider the access m ∈ X to the concrete cache hierarchy h ∈ S. Let r be the

lowest cache level containing the accessed memory block in h. Hence, the accessed

memory block must also be present in the abstract May cache at level r. Also, the
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memory block will not be present in the abstract Must caches at all level i < r, because

otherwise h itself would contain the accessed memory block at a lower level, and the

request would never reach level r. Hence, according to our abstract transfer function,

the access m ∈ AccessMay
r . Therefore, the accessed memory block will be brought in

the first position in all levels of May cache upto level r. This is in accordance with the

update by the concrete transfer function to h, which will also bring m to first position

in all concrete cache levels of h upto level r.

For a multi-reference Access, AccessMust
i = φ, for all levels i. Since the abstract trans-

fer function increases the ages of cache blocks in the May Cache only using AccessMust
i , it

is clear that the lower bounds of cache blocks as given by the May cache after the update,

will be the same as the lower bounds before the update. Moreover, no cache blocks will

be evicted from the May cache at any level. Since the concrete transfer function will

only increase the age of cache blocks in h, the cache blocks in the updated concrete cache

hierarchy at all levels will be present in the updated May cache and will also respect the

lower bounds.

The ages of cache blocks in the persistence cache are updated based on the contents

of the Must cache. Since the memory block accessed by m is not present in the Must

cache at all levels i < r, this will result in an increase in the age of all cache blocks in

the Persistence cache by atleast 1. Moreover, cache blocks are never evicted from the

persistence cache at any level. The concrete transfer function will increase the ages of

all cache blocks upto level r by 1, which matches the increase in age by the abstract

transfer function. Hence, the upper bound set by the updated persistence cache will be

obeyed by the cache blocks in the updated concrete caches.

Finally, no new cache blocks are brought in the Must cache at any level by the

abstract transfer function. Before the update, all the cache blocks in the Must cache at

all levels are present in h at the appropriate level. We have to show that if a cache block

in the concrete cache at level i < r(which is also present in the Must cache at the same

level) is removed by the concrete transfer function, then this cache block will also be

removed by the abstract transfer function from the Must cache. If a cache block in the
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concrete cache at level i is evicted, then it must be at position Ai(i.e., the associativity

at level i) in terms of its age. Since the upper bound of a cache block is decided by

the Must cache(actually by the Persistence cache, but the upper bounds are the same),

hence this cache block must also be in the must cache at position Ai. Now we have

shown that that the access m is guaranteed to be present in AccessMay
i , since i < r,

and the abstract trasnfer function updates the ages of cache blocks in the Must cache

according to AccessMay
i . Also, the age of all cache blocks in the Must cache at level i

is guaranteed to increase by atleast 1, which is enough to remove the cache block under

discussion from the Must cache. This proves the Abstraction result for Multi-reference

Accesses as well.

10.4 Proof of Termination

Kildall’s Algorithm to compute the fixed-point elements of the abstract lattice in the

above Abstract interpretation framework is guaranteed to terminate because the abstract

lattice is finite and the abstract transfer function is monotonic. The set of all abstract

cache hierarchy states(Ĥ) is finite, and the abstract lattice is simply the cross-product of

three finite sets. The abstract transfer function uses the transfer functions for Must, May

and Persistence caches which have already been proved monotonic. Hence, our abstract

tranfer function is also monotonic.

10.5 Proof of Safety(With Partial Blocks)

To accomodate partial blocks in the mathematical framework given in Section 3, we alter

the definition of Abstract Set state. Let

M
′
x =

x⋃

i=1

Mi

Abstract Set State is a function ŝi,x : fi,x → 2M
′
x∪⊥. Similar to the previous definition,

it maps a line in the abstract set fi,x to a set of cache blocks. The difference is that the
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size of these cache blocks need not necessarily be linesizex, and in fact could range from

linesize1 to linesizex. This allows partial blocks to be present in the abstract cache

along with the actual blocks.

The size of a partial block is determined by the number of basic cache blocks present

in it(as explained in Chaper 7.2). The subset relation among cache blocks is defined as

follows : For cache blocks m1,m2 ∈ M
′
n, m1 ⊆ m2 if and only if all the basic cache blocks

of m1 are also the basic cache blocks of m2.

Given a partial block mp at level x, the full block corresponding to it is given by the

function parentx : M
′
x → Mx. parentx(mp) = m,m ∈ Mx if and only if mp ⊆ m. Since

all the cache blocks in Mx are disjoint, there will be a unique full block corresponding

to a given partial block.

The presence of a partial block consisting of rx basic blocks in the abstract Must

cache at level y forces either the full block to be present in the concrete cache at level

y or a subset of the block to be present at level x. The function γ
′
expresses the above

requirement mathematically:

γ
′
(ĥMust, ĥMay, ĥPer) = {h ∈ H|∀y, 1 ≤ y ≤ n, ∀i, 1 ≤ i ≤ setsy, ∀a, 1 ≤ a ≤ Ay,

if mp ∈ ((ĥMust(Fy))(fi,y))(l
a
i,y)and |mp| = rx, where x < y, then if setx(mp) = j,

either ∃b, 1 ≤ b ≤ Ax − (Ay − a) such that((h(Fx))(fj,x))(l
b
j,x) = mp or ∃c, 1 ≤ c ≤ a,

such that ((h(Fy))(fi,y))(l
c
i,y) = parenty(mp)}

The final concretization function for the analysis with Partial blocks must generate

concrete cache hierarchies which take into account the limitations set by the partial

blocks in the Must cache and the contents of the May and Persistence cache.

γĤ
Pr = γĤ ∩ γ

′

The cache hierarchies given by γ
′

only contain those cache blocks which correspond

to partial blocks in the Must cache. Since there is no restriction on the other cache
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blocks, γ
′
will actually generate a large number of concrete cache hierarchies, with the

other cache blocks present at all possible ages (or not present at all). The restriction on

these other cache blocks comes from the May and Persistence caches. γĤ(defined in the

previous section) uses the full blocks in the Must cache, as well as the contents of May

and Persistence cache to decide which cache blocks should be present in the concrete

cache and their ages. Note that the full blocks corresponding to the partial blocks will

be present in the May cache(with a lower age) and in the Persistence cache(with a higher

age). The partial blocks themselves will now force the actual blocks to be present in all

concrete cache hierarchies(as expressed by γ
′
) and a more strict bounds on their ages.

The abstraction function(αĤ
Pr) is an extension of the abstraction function(αĤ) de-

fined in the previous section. Given a set S of concrete cache hierarchies, the May and

Persistence caches are exactly the same as those given by αĤ . Moreover, the full cache

blocks in the Must cache are also determined in the same way as in αĤ . For determining

which partial blocks will be present in the Must cache, the following rule is used:

If ∃x, y, 1 ≤ x < y ≤ n and ∃m,m
′ ∈ M

′
y,m ⊆ m

′
, such that ∀h ∈ S either ∃a, 1 ≤

a ≤ Ay,m
′ ∈ ((h(Fy))(fi,y))(l

a
i,y), (in which case let h ∈ S1) or ∃b, 1 ≤ b ≤ Ax,m ∈

((h(Fx))(fj,x))(l
b
j,x), (in which case let h ∈ S2), then mPr ∈ ((ĥMust(Fy))(fi,y))(l

c
i,y),

where c = Ay −Min(Minh∈S1(Ay − ah),Ming∈S2(Ax − bg)). ah and bg are the ages of

the cache blocks m
′
and m in cache hierachies h and g from S1 and S2 respectively.

With both γĤ
Pr and αĤ

Pr fully defined, let us now prove one of the properties of Galois

Connection:

αĤ
Pr(γ

Ĥ
Pr((ĥ

Must, ĥMay, ĥPer))) = (ĥMust, ĥMay, ĥPer)

Proof Let γĤ
Pr((ĥ

Must, ĥMay, ĥPer)) = S. We will show that every cache block in ĥMust

(ĥMay, ĥPer) will also be present in the Must(May, Persistence) cache given by α(S) with

the same age. For cache blocks present in ĥMay and ĥPer which do not have corresponding

partial blocks in ĥMust, the upper and lower bounds on their ages in S will be determined

by their ages in ĥMay and ĥPer respectively. Hence, these cache blocks will be present
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in the May and Persistence cache produced by α(S) with the same age as in ĥMay and

ĥPer.

For cache blocks of ĥMay which have corresponding partial blocks, γ
′
only imposes a

new upper bound on their ages, thus not changing the lower bound of such cache blocks

among all concrete cache hierarchies in S. For cache blocks of ĥPer which have corre-

sponding partial blocks, the upper bound imposed by the partial blocks will be greater

than or equal to the age of the cache block in ĥPer. When partial blocks are created

in the Must cache, their ages are greater than equal to the ages of the corresponding

actual blocks present in the Must cache, and the ages of a cache block in the Must and

Persistence caches are the same (both maintain an upper bound). Hence, we have shown

that the May and Persistence caches as determined by α(S) will be the same as ĥMay

and ĥPer.

The non-partial cache blocks in ĥMust will be present in all the cache hierarchies in

S, and hence will be present in the Must cache given by α(S), with the same age as in

ĥMust. We will now show that all the partial blocks in ĥMust will also be present in the

Must cache given by α(S), with the same age.

Consider a partial block mp ∈ ((ĥMust(Fy))(fi,y))(l
a
i,y) of size rx.

According to γ
′
, ∀h ∈ S either parenty(mp) will be present in at level y in h with

a maximum age of a, or mp will be present at level x in h with a maximum age of

Ax − (Ay − a).

Now, according to the abstraction function defined, this will result in the partial block mp

to be present in the Must cache given by α(S) at level y with the eviction distance to be

minimum of the eviction distance of the block across all hierarchies in S. The minimum

eviction distance at level y across all h ∈ S would be Ay − a (since the maximum age is

a), while the minimum eviction distance at level x would be Ax− (Ax− (Ay − a)) (since

the maximum age is Ax − (Ay − a)). Hence, the age of the partial block is given by

c = Ay −Min(Ay − a,Ax − (Ax − (Ay − a)))

= Ay −Min(Ay − a,Ay − a)
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= Ay − (Ay − a)

= a

Thus, the partial block will be present in the Must cache given by α(S) with the same

age as in ĥMust.

The other property of Galois connection, i.e. γĤ
Pr(α

Ĥ
Pr(S)) ⊇ S, ∀S ∈ 2H , was proved in

the previous section for Multi-level cache analysis without Partial blocks. We consider

h ∈ S and consider cache block m at level x in h, with age a. By the argument of the

previous section, γĤ(αĤ
Pr(S)) contains a concrete cache hierarchy which contains m at

the same level with the same age. We will show that γ
′
(αĤ

Pr(S)) also contains a cache

hierarchy with m at the same level and same age. If m does not generate a partial block,

then there is no restriction on the age or presence of m, and hence the above result will

be true. If m does generate a partial block (either at level x or a higher level y), then the

eviction distance of this partial block will be less than or equal to the eviction distance

of m in h. For a partial block with eviction distance e, γ
′

generates cache hierachies

with the actual block at all eviction distances greater than or equal to e. Hence, γ
′
will

generate a concrete cache hierarchy with m at the same level x and age a.
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Conclusion

In our work, we have shown that there is scope for improvement in the precision of the

original Must Analysis which is the cornerstone of most of the theories for WCET esti-

mation. The impact of the imprecise Address Analysis for Data caches on the precision

of Must analysis can be lessened by our improved Must Analysis for a class of programs.

For cache levels with high associativity and high block size, our approach for Must Anal-

ysis fares even better, and hence is most suited for Multi-level cache analysis. We have

also detected and rectified a flaw in the original Persistence Analysis. While the flaw

has been detected by others as well, our approach is more precise than other approaches,

and is able to detect more persistent blocks while still ensuring safety.

We have also extended the Abstract Interpretation based cache analysis from single

level to multi-level caches. Previous efforts have either neglected the writeback effect or

have completely changed the abstract lattice. Our approach just involves a simple exten-

sion to the original single-level abstract lattice. We clearly state the interdependencies

between Must, May and Persistence analysis, while dealing with multi-level, non-inclusive

caches. We argue that for multi-level caches, along with must analysis, to account for

the filtering and writeback effect, May and Persistence analysis is also necessary at each

level. To our knowledge, our work is the first effort for safely performing Persistence

analysis in the presence of writebacks. We further improve the precision of Multi-level

Must analysis by introducing partial and pseudo blocks in the cache hierarchy. This also

61
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justifies our decision in treating the entire cache hierarchy as one unit, and performing

the various analyses on the entire hierarchy. We implemented our analysis on top of

an existing prototype for WCET estimation, and showed that introducing partial blocks

does result in more precise estimates for some benchmarks.
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