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Abstract

Tracklet Clustering is central to several Computer vision

tasks [17][20]. A video can be represented as a sequence of

tracklets, each spanning over 10-20 successive video frames,

and each tracklet is associated with one entity (eg. per-

son in case of TV-serial videos). Tracklets are instances of

data-types exhibiting rich spatio-temporal structure. Exist-

ing approaches model tracklets by deploying detailed para-

metric models with a large number of parameters, making

the inference unwieldy. The task of Person Discovery in

long TV-series videos (40-45 minutes) with many persons

can be naturally posed as tracklet clustering, and existing

approaches give unsatisfactory performance on it. In this

paper we attempt to leverage Temporal Coherence(TC) of

videos to improve tracklet clustering. TC is the fundamen-

tal property of videos that each tracklet is likely to be asso-

ciated with the same entity as its predecessor or successor.

We propose the first Bayesian nonparametric approach for

modelling TC, which can automatically infer the number

of clusters to be formed. The major contribution of this

paper is Temporally Coherent Chinese Restaurant Process

(TC-CRP), which extends CRP by using TC. On the task

of discovering persons in TV serials via tracklet clustering,

without meta-data such as scripts, TC-CRP shows up to

25% improvement in cluster purity compared to state-of-

the-art parametric models, and upto 36% improvement in

number of persons discovered. We use a simple representa-

tion of tracklets: a vector of very generic features (like pixel

intensity) which can correspond to any type of entity (not

necessarily person), and empirically demonstrate the util-

ity of TC-CRP for discovering entities like cars and planes.

Moreover, unlike existing approaches TC-CRP can perform

online tracklet clustering on streaming videos with very little

performance deterioration, and can also automatically reject

outliers (tracklets resulting from false detections).

1 Introduction

In this paper we study the problem of Tracklet clus-
tering. Tracklets are formed by detections of an entity
(say a person) from a short contiguous sequence of 10-
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20 video frames. They have complex spatio-temporal
properties. Effective clustering of Tracklets can lead to
interesting applications in Computer vision [17][20].

The problem of automated discovery of persons from
videos along with all their occurrences has attracted a
lot of interest [27][28][29] in video analytics. This allows
users to know the persons appearing in a long video
without watching it fully, or to selectively watch those
parts which contain a person of interest. Existing at-
tempts try to leverage meta-data such as scripts [28][29]
and hence do not apply to videos available on the
wild, such as TV-Series episodes uploaded by viewers
on Youtube (which have no such meta-data). In this
paper, we pose this problem as tracklet clustering. Our
goal is to design algorithms for tracklet clustering which
can work on long videos. We should be able to handle
any type of entity, not just person. Given a video in
the wild it is unlikely that the number of entities will
be known, so the method should automatically adapt to
unknown number of entities. To this end we advocate an
Bayesian non-parametric clustering approach to Track-
let clustering and study its effectiveness in automated
discovery of entities with all their occurrences in long
videos. The main challenges are in modeling the spatio-
temporal properties. To the best of our knowledge this
problem has not been studied either in Machine Learn-
ing or in Computer Vision community.

To explain the spatio-temporal properties we intro-
duce some definitions. A track is formed by detecting
entities (like people’s faces) in each video frame, and
associating detections across a contiguous sequence of
frames (typically a few hundreds in a TV series) based
on appearance and spatio-temporal locality. Each track
corresponds to a particular entity, like a person in a TV
series. Forming long tracks is often difficult, especially
if there are multiple detections per frame. This can be
solved hierarchically, by associating the detections in a
short window of frames (typically 10-20) to form track-
lets [20] and then linking the tracklets from successive
windows to form tracks. The short-range association of
tracklets to form tracks is known as tracking. But in
a TV series video, the same person may appear in dif-
ferent (non-contiguous) parts of the video, and so we
need to associate tracklets on a long-range basis also
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Figure 1: Top: a window consisting of frames
20000,20001,20002, Bottom: another window- with frames
21000,21001,21002. The detections are linked on spatio-
temporal basis to form tracklets. One person (marked with
red) occurs in both windows, the other (marked with blue)
occurs only in the second. The two red tracklets should be
associated though they are from non-contiguous windows

(see Figure 1). Moreover the task is complicated by
lots of false detections which act as spoilers. Finally,
the task becomes more difficult on streaming videos,
where only one pass is possible over the sequence. A
major cue for this task comes from a very fundamen-
tal property of videos: Temporal Coherence(TC). This
property manifests itself at detection-level as well as
tracklet-level; at feature-level as well as at semantic-
level. At detection-level this property implies that the
visual features of the detections (eg. appearance of an
entity) are almost unchanged across a tracklet (See Fig.
2). At tracklet-level it implies that spatio-temporally
close (but non-overlapping) tracklets are likely to belong
to the same entity (Fig. 3). Additionally, overlapping
tracklets (that cover the same frames), cannot belong to
the same entity. A tracklet can be easily represented
as all the associated detections are very similar (due to
detection-level TC). Such representation is not easy for
a long track where the appearances of the detections
may gradually change.

Contribution In this paper, we explore tracklet
clustering, an active area of research in Computer Vi-
sion, and advocate a Bayesian non-parametric(BNP)
approach for it. We apply it to an important open
problem: discovering entities (like persons) and all their
occurrences from long videos, in absence of any meta-
data, e.g. scripts. We use a simple and generic rep-
resentation leading to representing a video by a ma-
trix, whose columns represent individual tracklets (un-
like other works which represent an individual detec-
tion by a matrix column, and then try to encode the
tracklet membership information). We propose Tempo-
rally Coherent-Chinese Restaurant process(TC-CRP), a
BNP prior for encouraging temporal coherence on the
tracklets. Our method yields a superior clustering of
tracklets over several baselines especially on long videos.
As an advantage it does not need the number of clus-
ters in advance. It is also able to automatically filter out
false detections, and perform the same task on stream-

Figure 2: TC at Detection level: Detections in successive
frames (linked to form a tracklet) are almost identical in
appearance, i.e. have nearly identical visual features

Figure 3: TC at Tracklet level: Blue tracklets 1,2 are spatio-
temporally close (connected by broken lines), and belong to
same character. Similarly red tracklets 3 and 4.

ing videos, which are impossible for existing methods of
tracklet clustering. To the best of our knowledge this
is the first demonstration of using BNP methodology
to model temporal coherence in videos, as well as for
tracklet clustering. Finally, the proposed methodology
is not application-specific and can be applied to any se-
quential data where the data-points are represented by
vectors, and are temporally coherent at semantic level.

2 Problem Definition

In this section, we elaborate on our task of tracklet
clustering for person discovery in videos, and general-
ize it to entity discovery in sequential data under con-
straints. We discuss the challenges, and review the re-
lated works on Tracklet Clustering, Person Discovery
and Constrained Clustering.

2.1 Notation Image-based Object Detectors have
become very powerful over the last few years. Entities
like human faces or objects like cars, aeroplanes etc can
be detected in individual images or video frames by
specialized detectors such as [21] [26]. In this work,
given a video, we fix beforehand the type of entity
(eg. person/face, cars, planes, trees) we are interested
in, and choose the appropriate detector which is run
on every frame of the input video. The detections
in successive frames are then linked based on spatial
locality, to obtain tracklets. At most R detections
from R contiguous frames are linked like this. The
tracklets of length less than R are discarded, hence all
tracklets consist of R detections. We restrict the length
of tracklets so that the appearance of the detections
remain almost unchanged (due to detection-level TC),
which facilitates tracklet representation. At R = 1 we
work with the individual detections.

We represent a detection by a vector of dimension
d. This can be done by downscaling a rectangular
detection to d × d square and then reshaping it to a
d2-dimensional vector of pixel intensity values (or some
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other features if deemed approprate). Each tracklet i
is a collection of R detections {Ii1, . . . , I

i
R}. Let the

tracklet i be represented by Yi =

∑
R

j=1
Ii
j

R
. If the video

has missing pixels due to noise, entries of the vectors Iij
will be missing, in which case the corresponding entries
of Yi are also missing. So finally we have N vectors (N :
number of tracklets) possibly with missing entries.

The tracklets can be sorted topologically based on
their starting and ending frame indices, so that each
tracklet i has a predecessor tracklet prev(i) and a suc-
cessor tracklet next(i). Also each tracklet i has a con-
flicting set of tracklets F (i) which are from frame(s) that
overlap with i. Each detection (and tracklet) is associ-
ated with an entity, which are unknown in number, but
presumably much less than the number of detections
(and tracklets). These entities also are represented by
vectors, say φ1, φ2, . . . , φK . Each tracklet i is associated
with an entity indexed by Zi, i.e. Zi ∈ {1, 2, . . . ,K}.

2.2 Problem Statement Let each video be rep-
resented as a sequence of (possibly incomplete) d-
dimensional vectors {Y1, . . . , YN} along with the set
{prev(i), next(i), F (i)}Ni=1. We aim to learn the vectors
{φ1, φ2, . . . , } and the assignment variables {Zi}

N
i=1. In

addition, we have constraints arising out of temporal co-
herence and other properties of videos. Each tracklet i is
likely to be associated with entities that its predecessor
or successor are associated with. Moreover, a tracklet i
cannot share an entity with its conflicting tracklets F (i),
as the same entity cannot occur twice in a same frame.
This notion is considered in relevant literature [8] [16].
Mathematically, the constraints are:

Zprev(i) = Zi = Znext(i)∀i ∈ {1, . . . , N}

Zi /∈ {Zj : j ∈ F (i)}∀i ∈ {1, . . . , N}(2.1)

These constraints give the task a flavour of non-
parametric constrained clustering. An interesting ex-
tension is to perform the task online i.e. when the dat-
apoints arrive sequentially, and no past datapoint can
be accessed once a new one has arrived.

Learning a φk-vector is equivalent to discovering
an entity, and its associated tracklets are discovered
by learning the set {i : Z(i) = k}. Thus the above
problem of tracklet clustering can also be viewed upon
as the general problem of discovering entities with all
their occurences in temporally coherent sequential data.
An additional extension of this task is to simultaneously
reject the outliers- datapoints which are significantly
different from the rest. In case of tracklet clustering
such outliers are the tracklets corresponding to false
detections. This particular problem can be easily linked
to the task of discovery of persons and their occurences
in TV-series videos without meta-data such as scripts,

and without using any other training data. In this case,
the persons can be represented by their face, and a Face
Detector like [21] can be used. Discovery of outliers
(non-face detections) can help to improve the results
for the user, and also help in domain adaptation of the
Face Detectors to such videos by serving as negative
examples. The online version of the problem can find
application in streaming videos.

2.3 Challenges The main challenge of tracklet clus-
tering problem lies in handling of the temporal co-
herence and the conflicts mentioned above. This has
been attempted recently in [16] and [8] through Markov
Random Fields and Subspace Clustering respectively,
though both of these methods involve computations
with large matrices and are hence computationally ex-
pensive, and suitable only for reasonably short videos.
Additionally, these methods need to know the number
of clusters to use, which in general not known before-
hand. Even if the number of persons in the episode is
known (which is often not the case), it is too restric-
tive to use that number as the number of clusters, since
some persons appear in various poses throughout the
video and such variations cannot be captured through
a single cluster. A better approach is to find the appro-
priate number of clusters from the data. Finally, none
of the existing methods are capable of rejecting outliers
and handling streaming videos.

2.4 Related Works Finally, we review the relevant
literature. Tracklet Association Tracking is a core
topic in computer vision, in which a target object is
located in each frame based on appearance similarity
and spatio-temporal locality. A more advanced task is
multi-target tracking [24], in which several targets are
present per frame. A particularly helpful paradigm for
multi-target tracking is tracking by detection [25], where
object-specific detectors like [26] are run per frame (or
on a subset of frames), and the detection responses are
linked to form tracks. From this came the concept
of tracklet [20] which attempts to do the linking hier-
archically. This requires pairwise similarity measures
between tracklets. Multi-target tracking via tracklets
is usually cast as Bipartite Matching, which is solved
using Hungarian Algorithm. Tracklet Association at-
tempts to link tracklets from contiguous frames only,
unlike tracklet clustering. It should be understood
that tracklet clustering and tracking are different.

Person Discovery in Videos is another task
which has recently received attention in Computer Vi-
sion. Cast Listing [27] aims to choose a representa-
tive subset of the face detections or face tracks in a
movie/TV series episode. Another task is to label
all the detections in a video, but this requires movie
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scripts [28] or labelled training videos having the same
characters [29]. An unsupervised version of this task
is considered in [16], aimed at face clustering in pres-
ence of spatio-temporal constraints. They use a Markov
Random Field, and encode the constraints as clique po-
tentials. Tracklet association and face clustering are
done simultaneously in [17] using HMRF. A recent face
clustering approach is WBSLRR [8] where the tempo-
ral constraints are encoded in the convex objective func-
tion, which is solved by ADMM. However, both [16] and
[8] use the detections themselves as datapoints, instead
of tracklets, and use track information through the con-
straints. Both encode the fact that detections in the
same tracklet are likely to belong to the same entity, and
that two detections in the same tracklet cannot share
the same entity. But they do not encode the impor-
tant observation that spatio-temporally close but non-
overlapping tracklets are also likely to share the same
entity. Moreover both methods involve large matrix op-
erations, and are hence slow and memory-consuming.

Independent of videos, Constrained Clustering
is itself a field of research [30]. Constraints are usually
must-link and don’t-link, which specify pairs which
should be assigned the same cluster, or must not
be assigned the same cluster. The constraints can
be hard [31] or soft/probabilistic [32]. Constrained
Spectral Clustering has also been studied recently [6] [7],
which allow constrained clustering of datapoints based
on arbitrary similarity measures.

All the above methods suffer from a major defect-
the number of clusters needs to be specified beforehand.
A way to avoid this is provided by Dirichlet Process,
which is able to identify the number of clusters from
the data. It is a mixture model with infinite number
of mixture components, and each datapoint is assigned
to one component. A limitation of DP is that it is
exchangeable, and cannot capture sequential structure
in the data. For this purpose, a Markovian variation was
proposed: Hierarchical Dirichlet Process- Hidden
Markov Model(HDP-HMM). A variant of this is
the sticky HDP-HMM (sHDP-HMM) [12], which was
proposed for temporal coherence in speech data for the
task of speaker diarization, based on the observation
that successive datapoints are likely to be from the
same speaker and so should be assigned to the same
component. However the type of constraints considered
here 2.1 have never been studied in a BNP framework.

3 Temporally Coherent Chinese Restaurant
Process

Dirichlet Process [9] has become an important clustering
tool in recent years. Its greatest strength is that unlike
K-means, it is able to discover the correct number
of clusters. Dirichlet Process is a distribution over

distributions over a measurable space. A discrete
distribution P is said to be distributed as DP (α,H)
over space A if for every finite partition of A as
{A1, A2, . . . , AK}, the quantity {P (A1), . . . , P (AK)} is
distributed as Dirichlet(αH(A1), . . . , αH(AK)), where
α is a scalar called concentration parameter, and H
is a distribution over A called Base Distribution. A
distribution P ∼ DP (α,H) is a discrete distribution,
with infinite support set {φk}, which are draws from H,
called the atoms.

3.1 Modeling Tracklets by Dirichlet Process
We consider H to be a d − dimensional multivariate
Gaussian with parameters µ and Σ. The atoms corre-
spond to faces of the persons. The generative process
for the set {Yi}

N
i=1 is then as follows:

P ∼ DP (α,H);Xi ∼ P, Yi ∼ N (Xi,Σ1)∀i ∈ [1, N ](3.2)

Here Xi is an atom, and it represents a person
face. Yi is a tracklet representation corresponding to
the person, and its slight variation from Xi (due to
effects like lighting and pose variation) is modeled using
N (Xi,Σ1).

Using the constructive definition of Dirichlet Pro-
cess, called the Stick-Breaking Process [10], the above
process can also be written equivalently as

π̂k ∼ Beta(1, α), πk = π̂k

k−1∏

i=1

(1− π̂i−1), φk ∼ H ∀k ∈ [1,∞)

Zi ∼ π, Yi ∼ N (φZi
,Σ1)∀i ∈ [1, N ](3.3)

Here, π is a distribution over integers, and Zi is
an integer that indexes the component corresponding
to the tracklet i.

Our aim is to discover the values φk, which will
give us the persons’ faces, and also to find the values
{Zi}, which define a clustering of the tracklets. For
this purpose we use collapsed Gibbs Sampling, where we
integrate out the P in Equation 3.2 or π in Equation 3.3.
The Gibbs Sampling Equations p(Zi|Z−i, {φk}, Y ) and
p(φk|φ−k, Z, Y ) are given in [11]. For Zi:

p(Zi = k|Z−i, φk, Yi) ∝ p(Zi = k|Z−i)p(Yi|Zi = k, φ)(3.4)

Here, p(Yi|Zi = k, φ) = N (Yi|φk,Σ1) is the data
likelihood term. We focus on the part p(Zi = k|Z−i) to
model TC.

3.2 Temporal Coherence through Chinese
Restaurant Process In the generative process (Equa-
tion 3.3) all the Zi are drawn IID conditioned on G.
Such models are called Completely Exchangeable. This
is, however, often not a good idea for sequential data
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such as videos. In Markovian Models like sticky HDP-
HMM, Zi is drawn conditioned on π and Zi−1.

In case of DP, the independence among Zi-s is lost
on integrating out π. After integration the generative
process of Eq 3.3 can be redefined as

φk ∼ H∀k ∈ [1,∞)

Zi|Z1, . . . , Zi−1 ∼ CRP (α);Yi ∼ N (φZi
,Σ1)(3.5)

The predictive distribution for Zi|Z1, . . . , Zi−1 for
Dirichlet Process is known as Chinese Restaurant Pro-
cess (CRP). It is defined as p(Zi = k|Z1:i−1) =

N
i
k

N−1+α
if k ∈ {Z1, . . . , Zi−1}; =

α

N−1+α
otherwise

where N i
k is the number of times the value k is taken

in the set {Z1, . . . , Zi−1}.
We now modify CRP to handle the Spatio-temporal

cues mentioned earlier. To model TC, we use prev(i)
for each tracklet i, as defined in Section 2.1. In the
generative process, we define p(Zi|Z1, . . . , Zi−1) with
respect to prev(i), similar to the Block Exchangeable
Mixture Model as defined in [13]. Here, with each Zi we
associate a binary change variable Ci. If Ci = 0 then
Zi = Zprev(i), i.e the tracklet identity is maintained.
But if Ci = 1, a new value of Zi is sampled. Note
that every tracklet i has a temporal predecessor prev(i).
However, if this predecessor is spatio-temporally close,
then it is more likely to have the same label. So, the
probability distribution of change variable Ci should
depend on this closeness. In TC-CRP, we use two values
(κ1 and κ2) for the Bernoulli parameter for the change
variables. We put a threshold on the spatio-temporal
distance between i and prev(i), and choose a Bernoulli
parameter for Ci based on whether this threshold is
exceeded or not. Note that maintaining tracklet identity
by setting Ci = 0 is equivalent to tracking.

Several data-points (tracklets) arise due to false
(non-face) detections. We need a way to model these.
Since these are very different from the Base mean µ, we
consider a separate component Z = 0 with mean µ and
a very large covariance Σ2, which can account for such
variations. The Predictive Probability function(PPF)
for TC-CRP is defined as follows:

T (Zi = k|Z1:i−1, C1:i−1, Ci = 1) = 0 if k ∈ {ZF (i)} − {0}

∝ β if k = 0

∝ nZC

k1 if k ∈ {Z1, . . . , Zi−1}, k /∈ {ZF (i)}

∝ α otherwise(3.6)

where ZF (i) is the set of values of Z for the set
of tracklets F (i) that overlap with i, and nZC

k1 is the
number of points j (j < i) where Zj = k and Cj = 1.
The first rule ensures that two overlapping tracklets
cannot have same value of Z. The second rule accounts
for non-face tracklets. The third and fourth rules define
a CRP restricted to the changepoints where Cj = 1.

The final tracklet generative process is as follows:

Algorithm 3.1. 1: φk ∼ N (µ,Σ) ∀k ∈ [1,∞)
2: for i = 1 : N do

3: if dist(i, prev(i)) ≤ thres then

4: Ci ∼ Ber(κ1)
5: else

6: Ci ∼ Ber(κ2)
7: end if

8: if Ci = 1 then

9: draw Zi ∼ T (Zi|Z1, . . . , Zi−1, C1, . . . , Ci−1, α)
10: else

11: Zi = Zprev(i)

12: end if

13: if Zi = 0 then

14: Yi ∼ N (µ,Σ2)
15: else

16: Yi ∼ N (φZi
,Σ1)

17: end if

18: end for

where T is the PPF for TC-CRP, defined in Eq 3.6.

3.3 Relationship with existing models TC-CRP
draws inspirations from several recently proposed
Bayesian nonparametric models, but is different from
each of them. It has three main characteristics: 1)
Change Variable 2) Spatio-temporal cues 3) Separate
component for false/outlier tracklets. The concept of
change variable Ci was used in Block-exchangeable Mix-
ture Model [13], which showed that this significantly
speeds up the inference. But in BEMM, the Bernoulli
parameter of changepoint variable Ci depends on
Zprev(i) while in TC-CRP it depends on dist(i, prev(i)).
Regarding spatio-temporal cues, the concept of provid-
ing additional weightage to self-transition was intro-
duced in sticky HDP-HMM [12], but this model does
not consider the change variable Ci. Moreover, it uses
a transition distribution Pk for each mixture compo-
nent k, which increases the model complexity. Like
BEMM [13] we avoid this step, and hence our PPF
(Eq 3.6) does not involve Zprev(i). DDCRP [14] de-
fines distances between every pair of datapoints, and
associates a new data-point i with one of the previous
ones (1, . . . , i− 1) based on this distance. Here we con-
sider distances between a point i and its predecessor
prev(i) only. On the other hand, DDCRP is unrelated
to the original DP-based CRP, as its PPF does not con-
sider nZ

k : the number of previous datapoints assigned to
component k. Hence our method is significantly differ-
ent from DDCRP. The first two rules of TC-CRP PPF
are novel.

3.4 Inference Inference in TC-CRP can once again
be performed through Gibbs Sampling. We need to
infer Ci, Zi and φk. As Ci and Zi are coupled, we
sample them in a block for each i ∈ [1, N ] as done
in [13]. If Cnext(i) = 0 and Znext(i) 6= Zprev(i), then
we must have Ci = 1 and Zi = Znext(i). If Cnext(i) = 0
and Znext(i) = Zi, then Zi = Znext(i), and Ci is sam-
pled from Bernoulli(κ). In case Cnext(i) = 1 and
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Znext(i) 6= Zi−1, then (Ci = a, Zi = k) with probability
proportional to p(Ci = a)p(Zi|Z−i, Ci = a))p(Yi|Zi =
k, φk). If a = 0 then p(Zi = k|Z−i, Ci = 1) = 1
if Zprev(i) = k, and 0 otherwise. If a = 1 then
p(Zi|Z−i, Ci = a)) is governed by TC-CRP. For sam-
pling φk, we make use of the Conjugate Prior formula of
Gaussians, to obtain the Gaussian posterior with mean

(nkΣ
−1
1 +Σ−1)

−1
(Σ−1

1 Yk+Σ−1µ) where nk = |{i : Zi =
k}|, and Yk =

∑
i:Zi=k Yi. Finally, we update the hy-

perparameters µ and Σ after every iteration, based on
the learned values of {φk}, using Maximum Likelihood
estimate. κ1,κ2 can also be updated, but in our im-
plementation we set them to 0.001 and 0.2 respectively
(based on empirical experience on a test video). Simi-
larly we fix the value of thres empirically.

3.5 Completion of Missing Entries Finally we
consider the case where the tracklet representations
Yi have missing entries, Let YΩi

be the observed part
of Yi. In that case, the generative process of this
vector will be YΩi

∼ N (φZiΩi
, σ2

1I), where φZiΩi
is

the projection of φZi
to the dimensions Ωi. Here we

use isotropic Gaussians, Σ = σ2I and Σ1 = σ2
1I, so

that we can compute the posterior mean independently
for each dimension. Similarly, during the learning of
φk, only the observed parts {YΩi

: Zi = k} are used.
Let Ω denote the set of observed entries. Then, for
dimension d, the posterior mean of φkd is given by
Ykd

σ2
1

+ µ

σ2

nkd

σ2
1

+ 1
σ2

, where nkd = |{i : Zi = k, (i, d) ∈ Ω}|, and

Ykd =
∑

i:Zi=k,(i,d)∈Ω Yid.

3.6 Online Inference In the online version of the
problem, the normal Gibbs Sampling will not be possi-
ble. For each tracklet i, we will have to infer Ci and Zi

based on Cprev(i), Zprev(i) and the {φk}-vectors learnt
from {Y1, Y2, . . . , Yi−1}. Once again, (Ci, Zi) is sampled
as a block as above, and the term p(Zi|Z−i, Ci = a)) fol-
lows from the TC-CRP PPF (Eq 3.6). Instead of draw-
ing one sample per data-point, an option is to draw
several samples and consider the mode.

4 Experimental Validation

We carried out extensive experiments on videos of
various lengths. We collected three episodes of The
Big Bang Theory (Season 1). Each episode is 20-
22 minutes long, and has 7-8 characters (occurring in
at least 50 frames). We also collected 6 episodes of
the famous Indian TV series “The Mahabharata” from
Youtube. Each episode of this series is 40-45 minutes
long, and have 15-25 prominent characters (occurring
in at least 100 frames). These videos are much longer
than those studied in similar works like [17], and have

more characters. Also, these videos are challenging
because of the somewhat low quality and motion blur.
Transcripts or labeled training sets are unavailable for
all these videos. As usual in the literature [16][17], we
represent the characters with their faces. We obtained
face detections by running the OpenCV Face Detector
on each frame separately. As described in Section 2 the
face detections were all converted to grayscale, scaled
down to 30× 30, and reshaped to form 900-dimensional
vectors. We considered tracklets of size R = 10 and
discarded smaller ones.

To emphasize the fact that our methods are not
restricted to faces or persons, we used two short videos-
one of cars and another of aeroplanes. The cars video
consisted of 5 cars of different colors, while the aero-
planes video had 6 planes of different colors/shapes.
These were created by concatenating shots of different
cars/planes in the Youtube Objects datasets [15]. The
objects were detected using the Object-specific detec-
tors [26]. Since here the color is the chief distinguishing
factor, we scaled the detections down to 30 × 30 and
reshaped them separately in the 3 color channels to get
2700-dimensional vectors. Here R = 1 was used, as
these videos are much shorter, and using long tracklets
would have made the number of data-points too low.
The dataset details are given in Table 1. 1

4.1 Alternative Methods A recent method for face
clustering using track information is WBSLRR [8] based
on Subspace Clustering. Though in [8] it is used for
clustering detections rather than tracklets, the change
can be made easily. Apart from that, we can use
Constrained Clustering as a baseline, and we choose a
recent method [7]. TC and frame conflicts are encoded
as must-link and don’t-link constraints respectively.
A big problem is that the number of clusters to be
formed is unknown. For this purpose, we note that
the tracklet matrix formed by juxtaposing the tracklet
vectors should be approximately low-rank because of
the similarity of spatio-temporally close tracklet vectors.
Such representation of a video as a low-rank matrix has
been attempted earlier [2] [22]. We can find a low-rank
representation of the tracklet matrix by any suitable
method, and use the rank as the number of clusters to
be formed in spectral clustering. We found that, among
these the best performance is given by Sparse Bayesian
Matrix Recovery (SBMR) [4]. Others are either too
slow (BRPCA [3]), or recover matrices with ranks too
low (OPTSPACE [1]) or too high (RPCA [2]). Finally,
we compare against another well-known BNP model for
sequential data- the sticky HDP-HMM [12].

1The appendix, code and data are available at http://clweb.
csa.iisc.ernet.in/adway
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4.2 Performance Measures The task of entity dis-
covery with all their tracks is novel and complex, and
has to be judged by suitable measures. We discard the
clusters that have less than 10 assigned tracklets (5 in
case of Cars/Aeroplanes). It turns out that the remain-
ing clusters cover about 85 − 95% of all the tracklets.
Further, there are some clusters which have mostly (70%
or more) false (non-entity) tracklets. We discard these
from our evaluation. We call the remaining clusters as
significant clusters. We say that a cluster k is “pure”
if at least 70% of the tracklets assigned to it belong to
any one entity A(say Sheldon for a BBT video, or Ar-
juna for a Mahabharata video, or the silvery car for
the Cars video). We also declare that the cluster k and
its corresponding mixture component φk corresponds to
the entity A. Also, then A is considered to be discov-
ered. The threshold of purity was set to 70% because
we found this roughly the minimum purity needed to
ensure that a component mean is visually recognizable
as the entity (after reshaping to d × d) (See Fig. 4,
5). We measure the Purity: fraction of significant clus-
ters that are pure, i.e. correspond to some entity. We
also measure Entity Coverage: the number of entities
with at least 1 pure significant cluster corresponding to
it. Next, we measure Tracklet Coverage: the fraction
of tracklets that are assigned to pure significant clus-
ters. Effectively, these tracklets are discovered, and the
remaining ones (in short/impure clusters) are lost.

4.3 Results The results on the three measures dis-
cussed above are shown in Tables 2,3,4. In terms of the
three measures, TC-CRP is usually the most accurate,
followed by sHDPHMM. This demonstrates that BNP
methods are more suitable to the task. The constrained
spectral clustering-based method is competitive on the
purity measure, but fares very poorly in terms of track-
let coverage. This is because, it forms many small pure
clusters, and a few very large impure clusters which
cover a huge fraction of the tracklets. Thus, a large
number of tracklets are lost. However on the Cars video
it does not produce any large impure cluster, and hence
returns the best performance. Curiously, WBSLRR is
found to be quite competent on the TV-series videos but
not on the Car and Aeroplane videos, perhaps because
of their high dimensionality (2700 instead of 900) and
relatively few tracklets.

It may be noted that the number of significant
clusters formed is a matter of concern, especially from
the user’ perspective. A small number of clusters allow
him/her to get a quick summary of the video. Ideally
there should be one cluster per entity, but that is not
possible due to the significant appearance variations,
as discussed in Section 2 (See Figure 6). The number
of clusters formed per video by the different methods

Dataset #Frames #Detections #Tracklets #Entities Entity Type

BBTs1e1 32248 25523 2408 7 Person(Face)
BBTs1e3 31067 21555 1985 9 Person(Face)
BBTs1e4 28929 20819 1921 8 Person(Face)
Maha22 66338 37445 3114 14 Person(Face)
Maha64 72657 65079 5623 16 Person(Face)
Maha65 68943 53468 4647 22 Person(Face)
Maha66 87202 76908 6893 17 Person(Face)
Maha81 78555 62755 5436 22 Person(Face)
Maha82 86153 52310 4262 24 Person(Face)

cars 750 694 694 5 Car
aeroplanes 750 939 939 6 Aeroplane

Table 1: Details of datasets

Figure 4: Face detections (top), and the corresponding atoms
(reshaped to square images) found by TC-CRP (bottom)

is indicated in Table 2. It appears that none of the
methods have any clear advantage over the others in
this regard. In the above experiments, we used tracklets
with size R = 10. We varied this number and found
that, for R = 5 and even R = 1 (dealing with detections
individually), the performance of TC-CRP and sHDP-
HMM did not change significantly. On the other hand,
the matrix returned by SBMR had higher rank (120-
130 for R = 1) as the number of tracklets increased.
Regarding running time, TC-CRP was fastest, and
converged faster than the more complex SHDPHMM.
WBSLRR and constrained clustering involved matrix
operations and were much slower.

4.4 Online Inference / Performance on Stream-
ing Videos We wanted to explore the case of stream-
ing videos, where the frames appear sequentially and
old frames are not stored. In the absence of actual
streaming datasets we performed the single-pass infer-
ence (Sec 3.6) on two of the videos from each set- Ma-
habharata and Big Bang Theory. We used the same
performance measures as above. The existing tracklet
clustering methods discussed in Sec 4.1 are incapable
in the online setting, and sticky HDP-HMM is the only
alternative. The results are presented in Table 5, which
show TC-CRP to be doing distinctly better. Notably,
the figures for TC-CRP in the online experiment are
not significantly lower than those in the offline experi-
ment, unlike sHDP-HMM. This indicates that TC-CRP
converges quicker, and so is more efficient offline.

Figure 5: Car detections (top), and the corresponding atoms found
by TC-CRP (bottom)
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Figure 6: Different atoms for different poses of same person

Dataset TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 0.75 (36) 0.84 (44) 0.67 (48) 0.73 (45)
BBTs1e3 0.83 (40) 0.76 (37) 0.80 (15) 0.67 (43)
BBTs1e4 0.89 (36) 0.83 (29) 0.77 (31) 0.71 (41)
Maha22 0.87 (69) 0.86 (74) 0.94 (44) 0.83 (79)
Maha64 0.92 (105) 0.91 (97) 0.85 (88) 0.75 (81)
Maha65 0.89 (85) 0.90 (89) 0.86 (76) 0.82 (84)
Maha66 0.96 (73) 0.95 (80) 0.87 (84) 0.81 (81)
Maha81 0.89 (88) 0.84 (95) 0.87 (84) 0.74 (78)
Maha82 0.88 (50) 0.86 (58) 0.78 (63) 0.83 (64)
Cars 0.94 (35) 0.92 (12) 1.00 (54) 0.24 (21)

Aeroplanes 0.95 (43) 0.87 (15) 0.84 (44) 0.21 (24)

Table 2: Purity results for different methods. The
number of significant clusters are written in brackets

Dataset TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 6 5 5 4
BBTs1e3 7 6 8 7
BBTs1e4 8 8 6 8
Maha22 14 14 10 14
Maha64 13 14 11 13
Maha65 19 17 13 17
Maha66 15 13 9 11
Maha81 21 20 14 20
Maha82 19 20 10 16
Cars 5 5 5 2

Aeroplanes 6 5 6 4

Table 3: Entity Coverage results for different methods

Dataset TCCRP sHDPHMM SBMR+ WBSLRR
ConsClus

BBTs1e1 0.67 0.79 0.29 0.73
BBTs1e3 0.88 0.68 0.09 0.53
BBTs1e4 0.82 0.78 0.22 0.62
Maha22 0.90 0.86 0.43 0.69
Maha64 0.90 0.81 0.39 0.62
Maha65 0.85 0.91 0.40 0.68
Maha66 0.80 0.68 0.43 0.65
Maha81 0.75 0.66 0.46 0.50
Maha82 0.81 0.64 0.37 0.64
Cars 0.73 0.69 1.00 0.04

Aeroplanes 0.93 0.70 0.88 0.09

Table 4: Tracklet Coverage results for different methods

Dataset Maha65 Maha81

Measure TC-CRP sHDPHMM TC-CRP sHDPHMM

Purity 0.89(79) 0.84 (82) 0.84(74) 0.70(57)
Entity Coverage 15 16 21 17

Tracklet Coverage 0.80 0.77 0.62 0.49

Dataset BBTs1e1 BBTs1e4

Measure TC-CRP sHDPHMM TC-CRP sHDPHMM

Purity 0.73(33) 0.50 (14) 0.88(32) 0.75(28)
Entity Coverage 3 3 6 7

Tracklet Coverage 0.65 0.40 0.81 0.67

Table 5: Online (single-pass) analysis on 4 videos

Figure 7: Non-face tracklet vectors (reshaped) recovered
by TC-CRP. Note that one face tracklet has been wrongly
reported as non-face

Dataset Maha65 Maha81

Method Precision Recall* Precision Recall*

KMeans 0.22 73 0.19 39
Constrained Spectral 0.30 12 0.12 16

TCCRP (c=5) 0.98 79 0.57 36
TCCRP (c=4) 0.98 87 0.64 47
TCCRP (c=3) 0.95 88 0.62 54
TCCRP (c=2) 0.88 106 0.50 57

Table 6: Discovery of non-face tracklets

4.5 Outlier Detection / Discovery of Non-Face
Tracklets Face Detectors such as [21] are trained on
static images, and applied on the videos on per-frame
basis. This approach itself has its challenges [18], and
the complex videos we consider in our experiments do
not help matters. As a result, there is a significant
number of false (non-face) detections, many of which
occur in successive frames and hence get linked as
tracklets. Identifying such junk tracklets not only helps
us to improve the quality of output provided to the
users, but may also help to adapt the detector to the
new domain, by retraining with these new negative
examples, as proposed in [19].

We make use of the fact that false tracklets are
relatively less in number (compared to the true ones),
and hence at least some of them can be expected to
deviate widely from the mean of the tracklet vectors.
This is taken care of in the TC-CRP tracklet model,
through the component φ0 that has very high variance,
and hence is most likely to generate the unusual track-
lets. We set this variance Σ2 as Σ2 = cΣ1, where c > 1.
The tracklets assigned Zi = 0 are reported to be junk
by our model. It is expected that high c will result in
lower recall but higher precision (as only the most un-
usual tracklets will go to this cluster), and low c will
have the opposite effect. We study this effect on two of
our videos- Maha65 and Maha81 (randomly chosen) in
Table 6 (See Fig. 7 for illustration). As baseline, we
consider K-means or spectral clustering of the tracklet
vectors. We may expect that one of the smaller clus-
ters should contain mostly the junk tracklets, since faces
are roughly similar (even if from different persons) and
should be grouped together. However, for different val-
ues of K (2 to 10) we find that the clusters are roughly
of the same size, and the non-face tracklets are spread
out quite evenly. Results are reported for the best K
(K = 10 for both). Note that because of the large num-
ber of tracklets (Table I) it is difficult to count the total
number of non-face ones. So for measuring recall, we
simply mention the number of non-face tracklets recov-
ered (recall*), instead of the fraction. It is clear that
TC-CRP significantly outperforms clustering on both
precision and recall*.

5 Conclusion

In this paper we proposed TC-CRP: a Bayesian Non-
parametric route to model temporal coherence in videos.
We showed its application in tracklet association, for the
task of discovery of entities and their tracks in videos
without using any additional information. Our method
is capable of identifying tracklets that result from false
detections, and this may be helpful in adapting pre-
trained detectors to videos by providing negative exam-
ples, which is an active area of research. It can also
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perform online tracklet clustering on streaming videos
without significant deterioration in performance.
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