Temporally Coherent CRP: A Bayesian Non-Parametric Approach for Clustering Tracklets with applications to Person Discovery in Videos

Adway Mitra* Soma Biswas† Chiranjib Bhattacharyya‡

Abstract

Tracklet Clustering is central to several Computer vision tasks [17][20]. A video can be represented as a sequence of tracklets, each spanning over 10-20 successive video frames, and each tracklet is associated with one entity (e.g., person in case of TV-serial videos). Tracklets are instances of data-types exhibiting rich spatio-temporal structure. Existing approaches model tracklets by deploying detailed parametric models with a large number of parameters, making the inference unwieldy. The task of Person Discovery in long TV-series videos (40-45 minutes) with many persons can be naturally posed as tracklet clustering, and existing approaches give unsatisfactory performance on it. In this paper we attempt to leverage Temporal Coherence (TC) of videos to improve tracklet clustering. TC is the fundamental property of videos that each tracklet is likely to be associated with the same entity as its predecessor or successor. We propose the first Bayesian nonparametric approach for modelling TC, which can automatically infer the number of clusters to be formed. The major contribution of this paper is Temporally Coherent Chinese Restaurant Process (TC-CRP), which extends CRP by using TC. On the task of discovering persons in TV serials via tracklet clustering, without meta-data such as scripts, TC-CRP shows up to 25% improvement in cluster purity compared to state-of-the-art parametric models, and up to 36% improvement in number of persons discovered. We use a simple representation of tracklets: a vector of very generic features (like pixel intensity) which can correspond to any type of entity, not just person. Given a video in the wild it is unlikely that the number of entities will be known, so the method should automatically adapt to unknown number of entities. To this end we advocate an Bayesian non-parametric clustering approach to Tracklet clustering and study its effectiveness in automated discovery of entities with all their occurrences in long videos. The main challenges are in modeling the spatio-temporal properties. To the best of our knowledge this problem has not been studied either in Machine Learning or in Computer Vision community.

To explain the spatio-temporal properties we introduce some definitions. A track is formed by detecting entities (like people’s faces) in each video frame, and associating detections across a contiguous sequence of frames (typically a few hundreds in a TV series) based on appearance and spatio-temporal locality. Each track corresponds to a particular entity, like a person in a TV series. Forming long tracks is often difficult, especially if there are multiple detections per frame. This can be solved hierarchically, by associating the detections in a short window of frames (typically 10-20) to form tracklets [20] and then linking the tracklets from successive windows to form tracks. The short-range association of tracklets to form tracks is known as tracking. But in a TV series video, the same person may appear in different (non-contiguous) parts of the video, and so we need to associate tracklets on a long-range basis also

*CSA Department, IISc
†EE Department, IISc
‡CSA Department, IISc
In this paper, we explore tracklet clustering, an active area of research in Computer Vision, and advocate a Bayesian non-parametric (BNP) approach for it. We apply it to an important open problem: discovering entities (like persons) and their occurrences from long videos, in absence of any metadata, e.g., scripts. We use a simple and generic representation leading to a vector by a matrix, whose columns represent individual tracklets (unlike other works which represent an individual detection by a matrix column, and then try to encode the tracklet membership information). We propose Temporally Coherent-Chinese Restaurant process (TC-CRP), a BNP prior for encouraging temporal coherence on the tracklets. Our method yields a superior clustering of tracklets over several baselines especially on long videos. As an advantage it does not need the number of clusters in advance. It is also able to automatically filter out false detections, and perform the same task on streaming videos, which are impossible for existing methods of tracklet clustering. To the best of our knowledge this is the first demonstration of using BNP methodology to model temporal coherence in videos, as well as for tracklet clustering. Finally, the proposed methodology is not application-specific and can be applied to any sequential data where the data-points are represented by vectors, and are temporally coherent at semantic level.

2 Problem Definition

In this section, we elaborate on our task of tracklet clustering for person discovery in videos, and generalize it to entity discovery in sequential data under constraints. We discuss the challenges, and review the related works on Tracklet Clustering, Person Discovery and Constrained Clustering.

2.1 Notation

Image-based Object Detectors have become very powerful over the last few years. Entities like human faces or objects like cars, aeroplanes etc can be detected in individual images or video frames by specialized detectors such as [21] [26]. In this work, given a video, we fix beforehand the type of entity (eg. person/face, cars, planes, trees) we are interested in, and choose the appropriate detector which is run on every frame of the input video. The detections in successive frames are then linked based on spatial locality, to obtain tracklets. At most R detections from R contiguous frames are linked like this. The tracklets of length less than R are discarded, hence all tracklets consist of R detections. We restrict the length of tracklets so that the appearance of the detections remain almost unchanged (due to detection-level TC), which facilitates tracklet representation. At $R = 1$ we work with the individual detections.

We represent a detection by a vector of dimension d. This can be done by downsampling a rectangular detection to $d \times d$ square and then reshaping it to a d^2-dimensional vector of pixel intensity values (or some
other features if deemed appropriate). Each tracklet \(i \) is a collection of \(R \) detections \(\{I_1^i, \ldots, I_R^i\} \). Let the tracklet \(i \) be represented by \(Y_i = \sum_{j=1}^{R} I_j^i \). If the video will be missing, in which case the corresponding entries of \(Y_i \) are also missing. So finally we have \(N \) vectors \(\{N: \text{number of tracklets} \} \) possibly with missing entries.

The tracklets can be sorted topologically based on their starting and ending frame indices, so that each tracklet \(i \) has a predecessor tracklet \(\text{prev}(i) \) and a successor tracklet \(\text{next}(i) \). Also each tracklet \(i \) has a conflicting set of tracklets \(F(i) \) which are from frame(s) that overlap with \(i \). Each detection (and tracklet) is associated with an entity, which are unknown in number, but presumably much less than the number of detections (and tracklets). These entities are also represented by vectors, say \(\phi_1, \phi_2, \ldots, \phi_K \). Each tracklet \(i \) is associated with an entity indexed by \(Z_i \), i.e. \(Z_i \in \{1, 2, \ldots, K\} \).

2.2 Problem Statement

Let each video be represented as a sequence of (possibly incomplete) \(d \)-dimensional vectors \(\{Y_1, \ldots, Y_N\} \) along with the set \(\{\text{prev}(i), \text{next}(i), F(i)\} \). We aim to learn the vectors \(\{\phi_1, \phi_2, \ldots\} \) and the assignment variables \(\{Z_i\} \). In addition, we have constraints arising out of temporal coherency and other properties of videos. Each tracklet \(i \) is likely to be associated with entities that its predecessor or successor are associated with. Moreover, a tracklet \(i \) cannot share an entity with its conflicting tracklets \(F(i) \), as the same entity cannot occur twice in a same frame. This notion is considered in relevant literature [8] [16]. Mathematically, the constraints are:

\[
Z_{\text{prev}(i)} = Z_i = Z_{\text{next}(i)} \forall i \in \{1, \ldots, N\} \\
Z_i \notin \{Z_j : j \in F(i)\} \forall i \in \{1, \ldots, N\}
\]

These constraints give the task a flavour of non-parametric constrained clustering. An interesting extension is to perform the task online i.e. when the datapoints arrive sequentially, and no past datapoint can be accessed once a new one has arrived.

Learning a \(\phi_k \)-vector is equivalent to discovering an entity, and its associated tracklets are discovered by learning the set \(\{i : Z(i) = k\} \). Thus the above problem of tracklet clustering can also be viewed upon as the general problem of discovering entities with all their occurrences in temporally coherent sequential data.

An additional extension of this task is to simultaneously reject the outliers- datapoints which are significantly different from the rest. In case of tracklet clustering such outliers are the tracklets corresponding to false detections. This particular problem can be easily linked to the task of discovery of persons and their occurrences in TV-series videos without meta-data such as scripts, and without using any other training data. In this case, the persons can be represented by their face, and a Face Detector like [21] can be used. Discovery of outliers (non-face detections) can help to improve the results for the user, and also help in domain adaptation of the Face Detectors to such videos by serving as negative examples. The online version of the problem can find application in streaming videos.

2.3 Challenges

The main challenge of tracklet clustering problem lies in handling of the temporal coherency and the conflicts mentioned above. This has been attempted recently in [16] and [8] through Markov Random Fields and Subspace Clustering respectively, though both of these methods involve computations with large matrices and are hence computationally expensive, and suitable only for reasonably short videos. Additionally, these methods need to know the number of clusters to use, which in general not known beforehand. Even if the number of persons in the episode is known (which is often not the case), it is too restrictive to use that number as the number of clusters, since some persons appear in various poses throughout the video and such variations cannot be captured through a single cluster. A better approach is to find the approximate number of clusters from the data. Finally, none of the existing methods are capable of rejecting outliers and handling streaming videos.

2.4 Related Works

Finally, we review the relevant literature. Tracklet Association Tracking is a core topic in computer vision, in which a target object is located in each frame based on appearance similarity and spatio-temporal locality. A more advanced task is multi-target tracking [24], in which several targets are present per frame. A particularly helpful paradigm for multi-target tracking is tracking by detection [25], where object-specific detectors like [26] are run per frame (or on a subset of frames), and the detection responses are linked to form tracks. From this came the concept of tracklet [20] which attempts to do the linking hierarchically. This requires pairwise similarity measures between tracklets. Multi-target tracking via tracklets is usually cast as Bipartite Matching, which is solved using Hungarian Algorithm. Tracklet Association attempts to link tracklets from contiguous frames only, unlike tracklet clustering. It should be understood that tracklet clustering and tracking are different.

Person Discovery in Videos is another task which has recently received attention in Computer Vision. Cast Listing [27] aims to choose a representative subset of the face detections or face tracks in a movie/TV series episode. Another task is to label all the detections in a video, but this requires movie
scripts [28] or labelled training videos having the same characters [29]. An unsupervised version of this task is considered in [16], aimed at face clustering in presence of spatio-temporal constraints. They use a Markov Random Field, and encode the constraints as clique potentials. Tracklet association and face clustering are done simultaneously in [17] using HMRF. A recent face clustering approach is WBSLLRF [8] where the temporal constraints are encoded in the convex objective function, which is solved by ADMM. However, both [16] and [8] use the detections themselves as datapoints, instead of tracklets, and use track information through the constraints. Both encode the fact that detections in the same tracklet are likely to belong to the same entity, and that two detections in the same tracklet cannot share the same entity. But they do not encode the important observation that spatio-temporally close but non-overlapping tracklets are also likely to share the same entity. Moreover both methods involve large matrix operations, and are hence slow and memory-consuming.

Independent of videos, Constrained Clustering is itself a field of research [30]. Constraints are usually must-link and don’t-link, which specify pairs which should be assigned the same cluster, or must not be assigned the same cluster. The constraints can be hard [31] or soft/probabilistic [32]. Constrained Spectral Clustering has also been studied recently [6] [7], which allow constrained clustering of datapoints based on arbitrary similarity measures.

All the above methods suffer from a major defect—the number of clusters needs to be specified beforehand. A way to avoid this is provided by Dirichlet Process, which is able to identify the number of clusters from the data. It is a mixture model with infinite number of mixture components, and each datapoint is assigned to one component. A limitation of DP is that it is exchangeable, and cannot capture sequential structure in the data. For this purpose, a Markovian variation was proposed: Hierarchical Dirichlet Process - Hidden Markov Model (HDP-HMM). A variant of this is the sticky HDP-HMM (sHDP-HMM) [12], which was proposed for temporal coherence in speech data for the task of speaker diarization, based on the observation that successive datapoints are likely to be from the same speaker and should be assigned to the same component. However the type of constraints considered here 2.1 have never been studied in a BNP framework.

3 Temporally Coherent Chinese Restaurant Process

Dirichlet Process [9] has become an important clustering tool in recent years. Its greatest strength is that unlike K-means, it is able to discover the correct number of clusters. Dirichlet Process is a distribution over distributions over a measurable space. A discrete distribution P is said to be distributed as $DP(\alpha, H)$ over space A if for every finite partition of A as $\{A_1, A_2, \ldots, A_K\}$, the quantity $\{P(A_1), \ldots, P(A_K)\}$ is distributed as $Dirichlet(\alpha H(A_1), \ldots, \alpha H(A_K))$, where α is a scalar called concentration parameter, and H is a distribution over A called Base Distribution. A distribution $P \sim DP(\alpha, H)$ is a discrete distribution, with infinite support set $\{\phi_k\}$, which are draws from H, called the atoms.

3.1 Modeling Tracklets by Dirichlet Process

We consider H to be a d - dimensional multivariate Gaussian with parameters μ and Σ. The atoms correspond to faces of the persons. The generative process for the set $\{Y_i\}_{i=1}^N$ is then as follows:

$$P \sim DP(\alpha, H); X_i \sim P, Y_i \sim N(X_i, \Sigma) \forall i \in [1, N]$$

Here X_i is an atom, and it represents a person face. Y_i is a tracklet representation corresponding to the person, and its slight variation from X_i (due to effects like lighting and pose variation) is modeled using $N(X_i, \Sigma_i)$. Using the constructive definition of Dirichlet Process, called the Stick-Breaking Process [10], the above process can also be written equivalently as

$$\pi_k \sim Beta(1, \alpha), \pi_k = \pi_k \prod_{i=1}^{k-1} (1 - \pi_{i-1}), \phi_k \sim H \forall k \in [1, \infty)$$

$$Z_i \sim \pi, Y_i \sim N(\phi Z_i, \Sigma_i) \forall i \in [1, N]$$

Here, π is a distribution over integers, and Z_i is an integer that indexes the component corresponding to the tracklet i.

Our aim is to discover the values ϕ_k, which will give us the persons’ faces, and also to find the values $\{Z_i\}$, which define a clustering of the tracklets. For this purpose we use collapsed Gibbs Sampling, where we integrate out the P in Equation 3.2 or π in Equation 3.3. The Gibbs Sampling Equations $p(Z_i|Z_{-i}, \{\phi_k\}, Y)$ and $p(\phi_k|\phi_{-k}, Z, Y)$ are given in [11]. For Z_i:

$$p(Z_i = k|Z_{-i}, \phi_k, Y) \propto p(Z_i = k|Z_{-i})p(Y_i|Z_i = k, \phi)$$

Here, $p(Y_i|Z_i = k, \phi) = N(Y_i|\phi_k, \Sigma_i)$ is the data likelihood term. We focus on the part $p(Z_i = k|Z_{-i})$ to model TC.

3.2 Temporal Coherence through Chinese Restaurant Process

In the generative process (Equation 3.3) all the Z_i are drawn IID conditioned on G. Such models are called Completely Exchangeable. This is, however, often not a good idea for sequential data.
such as videos. In Markovian Models like sticky HDP-HMM, \(Z_i \) is drawn conditioned on \(\pi \) and \(Z_{i-1} \).

In case of DP, the independence among \(Z_{i-1} \)'s is lost on integrating out \(\pi \). After integration the generative process of Eq 3.3 can be redefined as

\[
\phi_k \sim H \forall k \in [1, \infty)
\]

\[
Z_i | Z_1, \ldots, Z_{i-1} \sim CRP(\alpha); Y_i \sim N(\phi_z, \Sigma_1)
\]

The predictive distribution for \(Z_i | Z_1, \ldots, Z_{i-1} \) for Dirichlet Process is known as Chinese Restaurant Process (CRP). It is defined as

\[
p(Z_i = k | Z_{1:i-1}) = \frac{N^k_i}{N - 1 + \alpha} \text{ if } k \in \{Z_1, \ldots, Z_{i-1}\}; = \frac{\alpha}{N - 1 + \alpha} \text{ otherwise}
\]

where \(N^k_i \) is the number of times the value \(k \) is taken in the set \(\{Z_1, \ldots, Z_{i-1}\} \).

We now modify CRP to handle the Spatio-temporal cues mentioned earlier. To model TC, we use \(prev(i) \) for each tracklet \(i \), as defined in Section 2.1. In the generative process, we define \(p(Z_i | Z_1, \ldots, Z_{i-1}) \) with respect to \(prev(i) \), similar to the Block Exchangeable Mixture Model as defined in [13]. Here, with each \(Z_i \) we associate a binary change variable \(C_i \). If \(C_i = 0 \) then \(Z_i = Z_{prev(i)} \), i.e., the tracklet identity is maintained. But if \(C_i = 1 \), a new value of \(Z_i \) is sampled. Note that every tracklet \(i \) has a temporal predecessor \(prev(i) \). However, if this predecessor is spatio-temporally close, then it is more likely to have the same label. So, the probability distribution of change variable \(C_i \) should depend on this closeness. In TC-CRP, we use two values \((\kappa_1 \text{ and } \kappa_2) \) for the Bernoulli parameter for the change variables. We put a threshold on the spatio-temporal distance between \(i \) and \(prev(i) \), and choose a Bernoulli parameter for \(C_i \) based on whether this threshold is exceeded or not. Note that maintaining tracklet identity by setting \(C_i = 0 \) is equivalent to tracking.

Several data-points (tracklets) arise due to false (non-face) detections. We need a way to model these. Since these are very different from the Base mean \(\mu \), we consider a separate component \(Z = 0 \) with mean \(\mu \) and a very large covariance \(\Sigma_2 \), which account for such variations. The Predictive Probability function (PPF) for TC-CRP is defined as follows:

\[
T(Z_i = k | Z_1, \ldots, Z_{i-1}, C_{i-1}, C_i = 1) = 0 \text{ if } k \in \{Z_{F(i)}\} \setminus \{0\} \quad \propto \beta \text{ if } k = 0
\]

\[
\propto n^{ZC}_{k,i} \text{ if } k \in \{Z_1, \ldots, Z_{i-1}\}, k \notin \{Z_{F(i)}\} \quad \propto \alpha \text{ otherwise}
\]

(3.6)

where \(Z_{F(i)} \) is the set of values of \(Z \) for the set of tracklets \(F(i) \) that overlap with \(i \), and \(n^{ZC}_{k,i} \) is the number of points \(j \) (\(j < i \)) where \(Z_j = k \) and \(C_j = 1 \). The first rule ensures that two overlapping tracklets cannot have same value of \(Z \). The second rule accounts for non-face tracklets. The third and fourth rules define a CRP restricted to the changepoints where \(C_j = 1 \).

The final tracklet generative process is as follows:

\begin{algorithm}
1: \(\phi_k \sim N(\mu, \Sigma) \forall k \in [1, \infty) \\
2: \text{for } i = 1 : N \text{ do} \\
3: \text{if } dist(i, prev(i)) \leq \text{thres} \text{ then} \\
4: \quad C_i \sim Ber(\kappa_1) \\
5: \text{else} \\
6: \quad C_i \sim Ber(\kappa_2) \\
7: \text{end if} \\
8: \text{if } C_i = 1 \text{ then} \\
9: \quad \text{draw } Z_i \sim T(Z_i | Z_1, \ldots, Z_{i-1}, C_{i-1}, C_i, \alpha) \\
10: \text{else} \\
11: \quad Z_i = Z_{prev(i)} \\
12: \text{end if} \\
13: \text{if } Z_i = 0 \text{ then} \\
14: \quad Y_i \sim N(\mu, \Sigma_2) \\
15: \text{else} \\
16: \quad Y_i \sim N(\phi_z, \Sigma_1) \\
17: \text{end if} \\
18: \text{end for}
\end{algorithm}

where \(T \) is the PPF for TC-CRP, defined in Eq 3.6.

3.3 Relationship with existing models TC-CRP draws inspirations from several recently proposed Bayesian nonparametric models, but is different from each of them. It has three main characteristics: 1) Change Variable 2) Spatio-temporal cues 3) Separate component for false/outlier tracklets. The concept of change variable \(C_i \) was used in Block-exchangeable Mixture Model [13], which showed that this significantly speeds up the inference. But in BEMM, the Bernoulli parameter of changepoint variable \(C_i \) depends on \(Z_{prev(i)} \) while in TC-CRP it depends on \(dist(i, prev(i)) \).

Regarding spatio-temporal cues, the concept of providing additional weightage to self-transition was introduced in sticky HDP-HMM [12], but this model does not consider the change variable \(C_i \). Moreover, it uses a transition distribution \(P_k \) for each mixture component \(k \), which increases the model complexity. Like BEMM [13] we avoid this step, and hence our PPF (Eq 3.6) does not involve \(Z_{prev(i)} \). DDCRP [14] defines distances between every pair of datapoints, and associates a new data-point \(i \) with one of the previous ones \((1, \ldots, i-1) \) based on this distance. Here we consider distances between a point \(i \) and its predecessor \(prev(i) \) only. On the other hand, DDCRP is unrelated to the original DP-based CRP, as its PPF does not consider \(n^Z_k \): the number of previous datapoints assigned to component \(k \). Hence our method is significantly different from DDCRP. The first two rules of TC-CRP PPF are novel.

3.4 Inference Inference in TC-CRP can once again be performed through Gibbs Sampling. We need to infer \(C_i, Z_i \) and \(\phi_k \). As \(C_i \) and \(Z_i \) are coupled, we sample them in a block for each \(i \in [1, N] \) as done in [13]. If \(C_{next(i)} = 0 \) and \(Z_{next(i)} \neq Z_{prev(i)} \), then we must have \(C_i = 1 \) and \(Z_i = Z_{next(i)} \). If \(C_{next(i)} = 0 \) and \(Z_{next(i)} = Z_i \), then \(Z_i = Z_{next(i)} \) and \(C_i \) is sampled from Bernoulli(\(\kappa \)). In case \(C_{next(i)} = 1 \) and
Let Ω denote the set of observed entries. Then, for parameter k, only the observed parts $\{Y_{i\Omega} : Z_i = k\}$ are used. Let Ω denote the set of observed entries. Then, for dimension d, the posterior mean of ϕ_{kd} is given by

$$\frac{\sum_{i,d} Y_{i\Omega} \phi_{i,d} \mathbb{1}_{Z_i = k}}{\sum_{i} Y_{i\Omega} \mathbb{1}_{Z_i = k}}$$

where $n_{kd} = \sum_{\Omega} Y_{i\Omega} \mathbb{1}_{Z_i = k, (i,d) \in \Omega}$, and $Y_{i\Omega} = \sum_{\Omega} \mathbb{1}_{Z_i = k, (i,d) \in \Omega} Y_{i\Omega}$.

3.5 Completion of Missing Entries

Finally we consider the case where the tracklet representations Y_i have missing entries. Let $Y_{i\Omega}$ be the observed part of Y_i. In that case, the generative process of this vector will be $Y_{i\Omega} \sim N(\phi_{Z_i,\Omega}, \Sigma^2 I)$, where $\phi_{Z_i,\Omega}$ is the projection of ϕ_{Z_i} to the dimensions Ω. Here we use isotropic Gaussians, $\Sigma = \sigma^2 I$ and $\Sigma_1 = \sigma^2 I$, so that we can compute the posterior mean independently for each dimension. Similarly, during the inference of ϕ_k, only the observed parts $\{Y_{i\Omega} : Z_i = k\}$ are used. Let Ω denote the set of observed entries. Then, for dimension d, the posterior mean of ϕ_{kd} is given by

$$\frac{\sum_{\Omega} Y_{i\Omega} \phi_{i,d} \mathbb{1}_{Z_i = k}}{\sum_{\Omega} Y_{i\Omega} \mathbb{1}_{Z_i = k}}$$

where $n_{kd} = \sum_{\Omega} Y_{i\Omega} \mathbb{1}_{Z_i = k, (i,d) \in \Omega}$, and $Y_{i\Omega} = \sum_{\Omega} \mathbb{1}_{Z_i = k, (i,d) \in \Omega} Y_{i\Omega}$.

3.6 Online Inference

In the online version of the problem, the normal Gibbs Sampling will not be possible. For each tracklet i, we will have to infer C_i and Z_i based on $C_{prev}(i)$, $Z_{prev}(i)$ and the $\{\phi_k\}$-vectors learnt from $\{Y_1, Y_2, \ldots, Y_{i-1}\}$. Once again, (C_i, Z_i) is sampled as a block as above, and the term $p(Z_i | Z_{i-1}, C_i = a)$ follows from the TC-CRP PPF (Eq. 3.6). Instead of drawing one sample per data-point, an option is to draw several samples and consider the mode.

4 Experimental Validation

We carried out extensive experiments on videos of various lengths. We collected three episodes of The Big Bang Theory (Season 1). Each episode is 20-22 minutes long, and has 7-8 characters (occurring in at least 50 frames). We also collected 6 episodes of the famous Indian TV series “The Mahabharata” from Youtube. Each episode of this series is 40-45 minutes long, and have 15-25 prominent characters (occurring in at least 100 frames). These videos are much longer than those studied in similar works like [17], and have more characters. Also, these videos are challenging because of the somewhat low quality and motion blur. Transcripts or labeled training sets are unavailable for all these videos. As usual in the literature [16][17], we represent the characters with their faces. We obtained face detections by running the OpenCV Face Detector on each frame separately. As described in Section 2 the face detections were all converted to grayscale, scaled down to 30×30, and reshaped to form 900-dimensional vectors. We considered tracklets of size $R = 10$ and discarded smaller ones.

To emphasize the fact that our methods are not restricted to faces or persons, we used two short videos- one of cars and another of aeroplanes. The cars video consisted of 5 cars of different colors, while the aeroplanes video had 6 planes of different colors/shapes. These were created by concatenating shots of different cars/planes in the Youtube Objects datasets [15]. The objects were detected using the Object-specific detectors [26]. Since here the color is the chief distinguishing factor, we scaled the detections down to 30×30 and reshaped them separately in the 3 color channels to get 2700-dimensional vectors. Here $R = 1$ was used, as these videos are much shorter, and using long tracklets would have made the number of data-points too low. The dataset details are given in Table 1.

4.1 Alternative Methods

A recent method for face clustering using track information is WBSLRR [8] based on Subspace Clustering. Though in [8] it is used for clustering detections rather than tracklets, the change can be made easily. Apart from that, we can use Constrained Clustering as a baseline, and we choose a recent method [7]. TC and frame conflicts are encoded as must-link and don’t-link constraints respectively. A big problem is that the number of clusters to be formed is unknown. For this purpose, we note that the tracklet matrix formed by juxtaposing the tracklet vectors should be approximately low-rank because of the similarity of spatio-temporally close tracklet vectors. Such representation of a video as a low-rank matrix has been attempted earlier [2][22]. We can find a low-rank representation of the tracklet matrix by any suitable method, and use the rank as the number of clusters to be formed in spectral clustering. We found that, among these the best performance is given by Sparse Bayesian Matrix Recovery (SBMR) [4]. Others are either too slow (BRPCA [3]), or recover matrices with ranks too low (OPTSPACE [1]) or too high (RPCA [2]). Finally, we compare against another well-known BNP model for sequential data- the sticky HDP-HMM [12].
4.2 Performance Measures

The task of entity discovery with all their tracks is novel and complex, and has to be judged by suitable measures. We discard the clusters that have less than 10 assigned tracklets (5 in case of Cars/Aeroplanes). It turns out that the remaining clusters cover about $85 - 95\%$ of all the tracklets. Further, there are some clusters which have mostly (70\% or more) false (non-entity) tracklets. We discard these from our evaluation. We call the remaining clusters as significant clusters. We say that a cluster k is “pure” if at least 70\% of the tracklets assigned to it belong to any one entity A (say Sheldon for a BBT video, or Arjuna for a Mahabharata video, or the silvery car for the Cars video). We also declare that the cluster k and its corresponding mixture component ϕ_k corresponds to the entity A. Also, then A is considered to be discovered. The threshold of purity was set to 70\% because we found this roughly the minimum purity needed to ensure that a component mean is visually recognizable as the entity (after reshaping to $d \times d$) (See Fig. 4, 5). We measure the Purity: fraction of significant clusters that are pure, i.e., correspond to some entity. We also measure Entity Coverage: the number of entities with at least 1 pure significant cluster corresponding to it. Next, we measure Tracklet Coverage: the fraction of tracklets that are assigned to pure significant clusters. Effectively, these tracklets are discovered, and the remaining ones (in short/impure clusters) are lost.

4.3 Results

The results on the three measures discussed above are shown in Tables 2, 3, 4. In terms of the three measures, TC-CRP is usually the most accurate, followed by sHDPHMM. This demonstrates that BNP methods are more suitable to the task. The constrained spectral clustering-based method is competitive on the purity measure, but fares very poorly in terms of tracklet coverage. This is because, it forms many small pure clusters, and a few very large impure clusters which cover a huge fraction of the tracklets. Thus, a large number of tracklets are lost. However on the Cars video it does not produce any large impure cluster, and hence returns the best performance. Curiously, WBSLRR is found to be quite competent on the TV-series videos but not on the Car and Aeroplane videos, perhaps because of their high dimensionality (2700 instead of 900) and relatively few tracklets.

It may be noted that the number of significant clusters formed is a matter of concern, especially from the user’s perspective. A small number of clusters allow him/her to get a quick summary of the video. Ideally there should be one cluster per entity, but that is not possible due to the significant appearance variations, as discussed in Section 2 (See Figure 6). The number of clusters formed per video by the different methods is indicated in Table 2. It appears that none of the methods have any clear advantage over the others in this regard. In the above experiments, we used tracklets with size $R = 10$. We varied this number and found that, for $R = 5$ and even $R = 1$ (dealing with detections individually), the performance of TC-CRP and sHDPHMM did not change significantly. On the other hand, the matrix returned by SBMR had higher rank (120-130 for $R = 1$) as the number of tracklets increased. Regarding running time, TC-CRP was fastest, and converged faster than the more complex SHDPHMM. WBSLRR and constrained clustering involved matrix operations and were much slower.

4.4 Online Inference / Performance on Streaming Videos

We wanted to explore the case of streaming videos, where the frames appear sequentially and old frames are not stored. In the absence of actual streaming datasets we performed the single-pass inference (Sec 3.6) on two of the videos from each set- Mahabharata and Big Bang Theory. We used the same performance measures as above. The existing tracklet clustering methods discussed in Sec 4.1 are incapable in the online setting, and sticky HDP-HMM is the only alternative. The results are presented in Table 5, which show TC-CRP to be doing distinctly better. Notably, the figures for TC-CRP in the online experiment are not significantly lower than those in the offline experiment, unlike sHDPHMM. This indicates that TC-CRP converges quicker, and so is more efficient offline.
Table 3: Entity Coverage results for different methods

<table>
<thead>
<tr>
<th>Dataset</th>
<th>TCCRP</th>
<th>sHDPHMM</th>
<th>sHMM+</th>
<th>WBSLRK</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIITI-1</td>
<td>0.22</td>
<td>0.24</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>BIITI-1</td>
<td>0.22</td>
<td>0.24</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>Mahal</td>
<td>0.17</td>
<td>0.21</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>Maha</td>
<td>0.17</td>
<td>0.21</td>
<td>0.15</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 4: Tracklet Coverage results for different methods

<table>
<thead>
<tr>
<th>Dataset</th>
<th>TCCRP</th>
<th>sHDPHMM</th>
<th>sHMM+</th>
<th>WBSLRK</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIITI-1</td>
<td>0.22</td>
<td>0.24</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>BIITI-1</td>
<td>0.22</td>
<td>0.24</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>Mahal</td>
<td>0.17</td>
<td>0.21</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>Maha</td>
<td>0.17</td>
<td>0.21</td>
<td>0.15</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 5: Online (single-pass) analysis on 4 videos

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Mahal</th>
<th>Maha65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Entity</td>
<td>Curve</td>
<td>Curve</td>
</tr>
<tr>
<td>Tracklet</td>
<td>Coverage</td>
<td>Coverage</td>
</tr>
</tbody>
</table>

Table 6: Discovery of non-face tracklets

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahal81</td>
<td>0.22</td>
<td>0.12</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Constrained Spectral</td>
<td>0.30</td>
<td>0.12</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>TCCRP (c=5)</td>
<td>0.98</td>
<td>0.79</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>TCCRP (c=4)</td>
<td>0.98</td>
<td>0.87</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>TCCRP (c=3)</td>
<td>0.98</td>
<td>0.87</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>TCCRP (c=2)</td>
<td>0.88</td>
<td>0.50</td>
<td>57</td>
<td>57</td>
</tr>
</tbody>
</table>
perform online tracklet clustering on streaming videos without significant deterioration in performance.

Acknowledgements This research is partially supported by grants from Department of Science and Technology (Government of India) and Infosys.

References